Show commands: SageMath
Rank
The elliptic curves in class 262080jw have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 262080jw do not have complex multiplication.Modular form 262080.2.a.jw
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 2 & 2 & 4 & 4 \\ 4 & 2 & 4 & 1 & 8 & 8 & 16 & 16 \\ 8 & 4 & 2 & 8 & 1 & 4 & 2 & 2 \\ 8 & 4 & 2 & 8 & 4 & 1 & 8 & 8 \\ 16 & 8 & 4 & 16 & 2 & 8 & 1 & 4 \\ 16 & 8 & 4 & 16 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 262080jw
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 262080.jw7 | 262080jw1 | \([0, 0, 0, -12533772, -17305600016]\) | \(-1139466686381936641/17587891077120\) | \(-3361098326401477509120\) | \([2]\) | \(12582912\) | \(2.9327\) | \(\Gamma_0(N)\)-optimal |
| 262080.jw5 | 262080jw2 | \([0, 0, 0, -201277452, -1099108876304]\) | \(4718909406724749250561/1098974822400\) | \(210017359109711462400\) | \([2, 2]\) | \(25165824\) | \(3.2793\) | |
| 262080.jw4 | 262080jw3 | \([0, 0, 0, -202014732, -1090651095056]\) | \(4770955732122964500481/71987251059360000\) | \(13756977911502848655360000\) | \([2, 2]\) | \(50331648\) | \(3.6259\) | |
| 262080.jw2 | 262080jw4 | \([0, 0, 0, -3220439052, -70342976339984]\) | \(19328649688935739391016961/1048320\) | \(200337071800320\) | \([2]\) | \(50331648\) | \(3.6259\) | |
| 262080.jw3 | 262080jw5 | \([0, 0, 0, -396702732, 1352060303344]\) | \(36128658497509929012481/16775330746084419600\) | \(3205815628961032932792729600\) | \([2, 2]\) | \(100663296\) | \(3.9725\) | |
| 262080.jw6 | 262080jw6 | \([0, 0, 0, -19123212, -2992064493584]\) | \(-4047051964543660801/20235220197806250000\) | \(-3867010799816083046400000000\) | \([2]\) | \(100663296\) | \(3.9725\) | |
| 262080.jw1 | 262080jw7 | \([0, 0, 0, -5309579532, 148830726387184]\) | \(86623684689189325642735681/56690726941459561860\) | \(10833766630116300055102095360\) | \([2]\) | \(201326592\) | \(4.3190\) | |
| 262080.jw8 | 262080jw8 | \([0, 0, 0, 1401166068, 10206923717104]\) | \(1591934139020114746758719/1156766383092650262660\) | \(-221061498345761548921507676160\) | \([2]\) | \(201326592\) | \(4.3190\) |