# Properties

 Label 262080.o Number of curves 4 Conductor 262080 CM no Rank 1 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("262080.o1")

sage: E.isogeny_class()

## Elliptic curves in class 262080.o

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
262080.o1 262080o4 [0, 0, 0, -606828, -181940848]  2097152
262080.o2 262080o2 [0, 0, 0, -39828, -2542048] [2, 2] 1048576
262080.o3 262080o1 [0, 0, 0, -11703, 450452]  524288 $$\Gamma_0(N)$$-optimal
262080.o4 262080o3 [0, 0, 0, 77172, -14663248]  2097152

## Rank

sage: E.rank()

The elliptic curves in class 262080.o have rank $$1$$.

## Modular form 262080.2.a.o

sage: E.q_eigenform(10)

$$q - q^{5} - q^{7} - 4q^{11} + q^{13} - 2q^{17} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 