Properties

Label 262080.bj
Number of curves $4$
Conductor $262080$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 262080.bj have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 262080.bj do not have complex multiplication.

Modular form 262080.2.a.bj

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - q^{7} - q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 262080.bj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
262080.bj1 262080bj4 \([0, 0, 0, -9719148, -11662376528]\) \(531301262949272089/4740474375\) \(905918760714240000\) \([2]\) \(7864320\) \(2.6114\)  
262080.bj2 262080bj2 \([0, 0, 0, -621228, -173523152]\) \(138742439989609/12224619225\) \(2336161114364313600\) \([2, 2]\) \(3932160\) \(2.2649\)  
262080.bj3 262080bj1 \([0, 0, 0, -134508, 15908272]\) \(1408317602329/242911305\) \(46421073289543680\) \([2]\) \(1966080\) \(1.9183\) \(\Gamma_0(N)\)-optimal
262080.bj4 262080bj3 \([0, 0, 0, 689172, -808280912]\) \(189425802193991/1586486902455\) \(-303182368444172206080\) \([2]\) \(7864320\) \(2.6114\)