Properties

Label 262080.b
Number of curves $4$
Conductor $262080$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 262080.b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 262080.b do not have complex multiplication.

Modular form 262080.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - q^{7} - 6 q^{11} - q^{13} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 262080.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
262080.b1 262080b4 \([0, 0, 0, -80991468, 280547898192]\) \(11387025941627437947/10765300\) \(55546583423385600\) \([2]\) \(15925248\) \(2.9408\)  
262080.b2 262080b3 \([0, 0, 0, -5063148, 4381412688]\) \(2781982314427707/2703013040\) \(13946953574991790080\) \([2]\) \(7962624\) \(2.5943\)  
262080.b3 262080b2 \([0, 0, 0, -1023468, 365741392]\) \(16751080718799363/1529437000000\) \(10825183789056000000\) \([2]\) \(5308416\) \(2.3915\)  
262080.b4 262080b1 \([0, 0, 0, -224748, -34577072]\) \(177381177331203/29679104000\) \(210065374052352000\) \([2]\) \(2654208\) \(2.0450\) \(\Gamma_0(N)\)-optimal