Properties

Label 258720.eb
Number of curves $4$
Conductor $258720$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 258720.eb have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 258720.eb do not have complex multiplication.

Modular form 258720.2.a.eb

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + q^{9} + q^{11} - 2 q^{13} - q^{15} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 258720.eb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
258720.eb1 258720eb4 \([0, 1, 0, -434900496, -3491008565220]\) \(151020262560470148771848/35809491031875\) \(2157030814929439680000\) \([2]\) \(47185920\) \(3.4723\)  
258720.eb2 258720eb2 \([0, 1, 0, -53695441, 67694931359]\) \(35529391776305786176/16450653076171875\) \(7927410211875000000000000\) \([2]\) \(47185920\) \(3.4723\)  
258720.eb3 258720eb1 \([0, 1, 0, -27281746, -54130312720]\) \(298244193811346574784/4540317078515625\) \(34186480894098225000000\) \([2, 2]\) \(23592960\) \(3.1257\) \(\Gamma_0(N)\)-optimal
258720.eb4 258720eb3 \([0, 1, 0, -2475496, -148850497720]\) \(-27851742625371848/158882936571500625\) \(-9570518325606644239680000\) \([2]\) \(47185920\) \(3.4723\)