Properties

Label 25872.g
Number of curves $4$
Conductor $25872$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 25872.g have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 25872.g do not have complex multiplication.

Modular form 25872.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{9} - q^{11} - 2 q^{13} + 2 q^{15} - 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 25872.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25872.g1 25872bo4 \([0, -1, 0, -72131544, 235819764720]\) \(86129359107301290313/9166294368\) \(4417148379549007872\) \([2]\) \(2211840\) \(3.0054\)  
25872.g2 25872bo2 \([0, -1, 0, -4519384, 3666652144]\) \(21184262604460873/216872764416\) \(104508882373746622464\) \([2, 2]\) \(1105920\) \(2.6588\)  
25872.g3 25872bo3 \([0, -1, 0, -1132504, 9031470064]\) \(-333345918055753/72923718045024\) \(-35141232657526901047296\) \([2]\) \(2211840\) \(3.0054\)  
25872.g4 25872bo1 \([0, -1, 0, -505304, -45569040]\) \(29609739866953/15259926528\) \(7353610633595584512\) \([2]\) \(552960\) \(2.3123\) \(\Gamma_0(N)\)-optimal