Properties

Label 258570.s
Number of curves $4$
Conductor $258570$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 258570.s have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(13\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 258570.s do not have complex multiplication.

Modular form 258570.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - 2 q^{7} - q^{8} + q^{10} + 6 q^{11} + 2 q^{14} + q^{16} - q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 258570.s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
258570.s1 258570s3 \([1, -1, 0, -6340320, 1210291200]\) \(8010684753304969/4456448000000\) \(15681098596220928000000\) \([2]\) \(26542080\) \(2.9493\)  
258570.s2 258570s1 \([1, -1, 0, -3883905, -2945109699]\) \(1841373668746009/31443200\) \(110640563825875200\) \([2]\) \(8847360\) \(2.4000\) \(\Gamma_0(N)\)-optimal
258570.s3 258570s2 \([1, -1, 0, -3762225, -3138361875]\) \(-1673672305534489/241375690000\) \(-849339203244570090000\) \([2]\) \(17694720\) \(2.7465\)  
258570.s4 258570s4 \([1, -1, 0, 24809760, 9564742656]\) \(479958568556831351/289000000000000\) \(-1016916946929000000000000\) \([2]\) \(53084160\) \(3.2958\)