Properties

Label 2574v
Number of curves $2$
Conductor $2574$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("v1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2574v have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(11\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2574v do not have complex multiplication.

Modular form 2574.2.a.v

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 3 q^{5} - q^{7} + q^{8} - 3 q^{10} - q^{11} + q^{13} - q^{14} + q^{16} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 2574v

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2574.q1 2574v1 \([1, -1, 1, -935879, -348245953]\) \(-124352595912593543977/103332962304\) \(-75329729519616\) \([]\) \(24960\) \(1.9661\) \(\Gamma_0(N)\)-optimal
2574.q2 2574v2 \([1, -1, 1, -726494, -508331923]\) \(-58169016237585194137/119573538788081664\) \(-87169109776511533056\) \([3]\) \(74880\) \(2.5154\)