Properties

Label 25688.l
Number of curves $1$
Conductor $25688$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 25688.l1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(13\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 25688.l do not have complex multiplication.

Modular form 25688.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + 2 q^{7} + q^{9} + 4 q^{11} - 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 25688.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25688.l1 25688b1 \([0, -1, 0, -1408, -20931]\) \(-4000000/247\) \(-19075549168\) \([]\) \(13440\) \(0.72702\) \(\Gamma_0(N)\)-optimal