Properties

Label 25536ba
Number of curves $2$
Conductor $25536$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ba1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 25536ba have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 - T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 25536ba do not have complex multiplication.

Modular form 25536.2.a.ba

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} - q^{7} + q^{9} - 2 q^{11} + 6 q^{13} + 2 q^{15} - 4 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 25536ba

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25536.dd1 25536ba1 \([0, 1, 0, -22657, -1054753]\) \(4906933498657/1032471552\) \(270656222527488\) \([2]\) \(92160\) \(1.4840\) \(\Gamma_0(N)\)-optimal
25536.dd2 25536ba2 \([0, 1, 0, 49023, -6316065]\) \(49702082429663/94844496096\) \(-24862915584589824\) \([2]\) \(184320\) \(1.8306\)