Properties

Label 2550v2
Conductor 25502550
Discriminant 1.920×1013-1.920\times 10^{13}
j-invariant 11071118136251228691592 -\frac{1107111813625}{1228691592}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3+x25388x+257781y^2+xy+y=x^3+x^2-5388x+257781 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3+x2z5388xz2+257781z3y^2z+xyz+yz^2=x^3+x^2z-5388xz^2+257781z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x36982875x+12131781750y^2=x^3-6982875x+12131781750 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([1, 1, 1, -5388, 257781])
 
Copy content gp:E = ellinit([1, 1, 1, -5388, 257781])
 
Copy content magma:E := EllipticCurve([1, 1, 1, -5388, 257781]);
 
Copy content oscar:E = elliptic_curve([1, 1, 1, -5388, 257781])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(15,417)(15, 417)1.03101559373825579205145334731.0310155937382557920514533473\infty
(365/4,361/8)(-365/4, 361/8)0022

Integral points

(1,513) \left(-1, 513\right) , (1,513) \left(-1, -513\right) , (15,417) \left(15, 417\right) , (15,433) \left(15, -433\right) , (91,683) \left(91, 683\right) , (91,775) \left(91, -775\right) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: NN  =  2550 2550  = 2352172 \cdot 3 \cdot 5^{2} \cdot 17
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  19198306125000-19198306125000 = 12331256172-1 \cdot 2^{3} \cdot 3^{12} \cdot 5^{6} \cdot 17^{2}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  11071118136251228691592 -\frac{1107111813625}{1228691592}  = 1233125317220693-1 \cdot 2^{-3} \cdot 3^{-12} \cdot 5^{3} \cdot 17^{-2} \cdot 2069^{3}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.24341272284438765085955096681.2434127228443876508595509668
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.438693766627337463559171300190.43869376662733746355917130019
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.01883784518200351.0188378451820035
Szpiro ratio: σm\sigma_{m} ≈ 4.9032334195989394.903233419598939

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.03101559373825579205145334731.0310155937382557920514533473
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 0.622983069480795553651250906760.62298306948079555365125090676
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 24 24  = 3222 3\cdot2\cdot2\cdot2
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.85383155561774093552218849973.8538315556177409355221884997
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

3.853831556L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.6229831.03101624223.853831556\begin{aligned} 3.853831556 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.622983 \cdot 1.031016 \cdot 24}{2^2} \\ & \approx 3.853831556\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([1, 1, 1, -5388, 257781]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([1, 1, 1, -5388, 257781]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   2550.2.a.u

q+q2q3+q4q62q7+q8+q9q122q132q14+q16+q17+q184q19+O(q20) q + q^{2} - q^{3} + q^{4} - q^{6} - 2 q^{7} + q^{8} + q^{9} - q^{12} - 2 q^{13} - 2 q^{14} + q^{16} + q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 6912
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 33 I3I_{3} split multiplicative -1 1 3 3
33 22 I12I_{12} nonsplit multiplicative 1 1 12 12
55 22 I0I_0^{*} additive 1 2 6 0
1717 22 I2I_{2} split multiplicative -1 1 2 2

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.6.0.5
33 3B 3.4.0.1

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[1223, 0, 0, 2039], [11, 2, 1990, 2031], [826, 1635, 585, 1216], [1, 0, 12, 1], [281, 410, 1350, 421], [1, 6, 6, 37], [241, 420, 630, 481], [1, 12, 0, 1], [2029, 12, 2028, 13], [426, 505, 1445, 1106]] GL(2,Integers(2040)).subgroup(gens)
 
Copy content magma:Gens := [[1223, 0, 0, 2039], [11, 2, 1990, 2031], [826, 1635, 585, 1216], [1, 0, 12, 1], [281, 410, 1350, 421], [1, 6, 6, 37], [241, 420, 630, 481], [1, 12, 0, 1], [2029, 12, 2028, 13], [426, 505, 1445, 1106]]; sub<GL(2,Integers(2040))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2040=233517 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 , index 9696, genus 11, and generators

(1223002039),(11219902031),(82616355851216),(10121),(2814101350421),(16637),(241420630481),(11201),(202912202813),(42650514451106)\left(\begin{array}{rr} 1223 & 0 \\ 0 & 2039 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 1990 & 2031 \end{array}\right),\left(\begin{array}{rr} 826 & 1635 \\ 585 & 1216 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 281 & 410 \\ 1350 & 421 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 241 & 420 \\ 630 & 481 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2029 & 12 \\ 2028 & 13 \end{array}\right),\left(\begin{array}{rr} 426 & 505 \\ 1445 & 1106 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2040])K:=\Q(E[2040]) is a degree-2887778304028877783040 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2040Z)\GL_2(\Z/2040\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 25=52 25 = 5^{2}
33 nonsplit multiplicative 44 425=5217 425 = 5^{2} \cdot 17
55 additive 1414 102=2317 102 = 2 \cdot 3 \cdot 17
1717 split multiplicative 1818 150=2352 150 = 2 \cdot 3 \cdot 5^{2}

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 2550v consists of 4 curves linked by isogenies of degrees dividing 6.

Twists

The minimal quadratic twist of this elliptic curve is 102c2, its twist by 55.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(2)\Q(\sqrt{-2}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(5)\Q(\sqrt{5}) Z/6Z\Z/6\Z not in database
44 4.2.231200.1 Z/4Z\Z/4\Z not in database
44 Q(2,5)\Q(\sqrt{-2}, \sqrt{5}) Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.0.281883375.1 Z/6Z\Z/6\Z not in database
88 8.0.757596160000.15 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.3421020160000.21 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.4.53453440000.5 Z/12Z\Z/12\Z not in database
1212 deg 12 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1818 18.6.2805169134267893902408611328125.1 Z/18Z\Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split nonsplit add ord ss ord split ord ord ss ord ord ord ord ord
λ\lambda-invariant(s) 3 1 - 1 1,1 1 2 1 1 1,1 1 1 1 1 1
μ\mu-invariant(s) 1 0 - 0 0,0 0 0 0 0 0,0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.