y2+xy+y=x3+x2−5388x+257781
|
(homogenize, simplify) |
y2z+xyz+yz2=x3+x2z−5388xz2+257781z3
|
(dehomogenize, simplify) |
y2=x3−6982875x+12131781750
|
(homogenize, minimize) |
sage:E = EllipticCurve([1, 1, 1, -5388, 257781])
gp:E = ellinit([1, 1, 1, -5388, 257781])
magma:E := EllipticCurve([1, 1, 1, -5388, 257781]);
oscar:E = elliptic_curve([1, 1, 1, -5388, 257781])
sage:E.short_weierstrass_model()
magma:WeierstrassModel(E);
oscar:short_weierstrass_model(E)
Z⊕Z/2Z
magma:MordellWeilGroup(E);
| P | h^(P) | Order |
| (15,417) | 1.0310155937382557920514533473 | ∞ |
| (−365/4,361/8) | 0 | 2 |
(−1,513), (−1,−513), (15,417), (15,−433), (91,683), (91,−775)
sage:E.integral_points()
magma:IntegralPoints(E);
Invariants
| Conductor: |
N |
= |
2550 | = | 2⋅3⋅52⋅17 |
sage:E.conductor().factor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
oscar:conductor(E)
|
| Discriminant: |
Δ |
= |
−19198306125000 | = | −1⋅23⋅312⋅56⋅172 |
sage:E.discriminant().factor()
gp:E.disc
magma:Discriminant(E);
oscar:discriminant(E)
|
| j-invariant: |
j |
= |
−12286915921107111813625 | = | −1⋅2−3⋅3−12⋅53⋅17−2⋅20693 |
sage:E.j_invariant().factor()
gp:E.j
magma:jInvariant(E);
oscar:j_invariant(E)
|
| Endomorphism ring: |
End(E) | = | Z |
| Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm()
magma:HasComplexMultiplication(E);
|
| Sato-Tate group: |
ST(E) | = | SU(2) |
| Faltings height: |
hFaltings | ≈ | 1.2434127228443876508595509668 |
gp:ellheight(E)
magma:FaltingsHeight(E);
oscar:faltings_height(E)
|
| Stable Faltings height: |
hstable | ≈ | 0.43869376662733746355917130019 |
magma:StableFaltingsHeight(E);
oscar:stable_faltings_height(E)
|
| abc quality: |
Q | ≈ | 1.0188378451820035 |
|
| Szpiro ratio: |
σm | ≈ | 4.903233419598939 |
|
| Analytic rank: |
ran | = | 1
|
sage:E.analytic_rank()
gp:ellanalyticrank(E)
magma:AnalyticRank(E);
|
| Mordell-Weil rank: |
r | = | 1
|
sage:E.rank()
gp:[lower,upper] = ellrank(E)
magma:Rank(E);
|
| Regulator: |
Reg(E/Q) | ≈ | 1.0310155937382557920514533473 |
sage:E.regulator()
gp:G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma:Regulator(E);
|
| Real period: |
Ω | ≈ | 0.62298306948079555365125090676 |
sage:E.period_lattice().omega()
gp:if(E.disc>0,2,1)*E.omega[1]
magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
| Tamagawa product: |
∏pcp | = | 24
= 3⋅2⋅2⋅2
|
sage:E.tamagawa_numbers()
gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma:TamagawaNumbers(E);
oscar:tamagawa_numbers(E)
|
| Torsion order: |
#E(Q)tor | = | 2 |
sage:E.torsion_order()
gp:elltors(E)[1]
magma:Order(TorsionSubgroup(E));
oscar:prod(torsion_structure(E)[1])
|
| Special value: |
L′(E,1) | ≈ | 3.8538315556177409355221884997 |
sage:r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp:[r,L1r] = ellanalyticrank(E); L1r/r!
magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
| Analytic order of Ш: |
Шan |
≈ |
1
(rounded)
|
sage:E.sha().an_numerical()
magma:MordellWeilShaInformation(E);
|
3.853831556≈L′(E,1)=#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈221⋅0.622983⋅1.031016⋅24≈3.853831556
sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, 1, 1, -5388, 257781]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, 1, 1, -5388, 257781]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
2550.2.a.u
q+q2−q3+q4−q6−2q7+q8+q9−q12−2q13−2q14+q16+q17+q18−4q19+O(q20)
sage:E.q_eigenform(20)
gp:\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma:ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable.
There
are 4 primes p
of bad reduction:
sage:E.local_data()
gp:ellglobalred(E)[5]
magma:[LocalInformation(E,p) : p in BadPrimes(E)];
oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ except those listed in the table below.
sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage:gens = [[1223, 0, 0, 2039], [11, 2, 1990, 2031], [826, 1635, 585, 1216], [1, 0, 12, 1], [281, 410, 1350, 421], [1, 6, 6, 37], [241, 420, 630, 481], [1, 12, 0, 1], [2029, 12, 2028, 13], [426, 505, 1445, 1106]]
GL(2,Integers(2040)).subgroup(gens)
magma:Gens := [[1223, 0, 0, 2039], [11, 2, 1990, 2031], [826, 1635, 585, 1216], [1, 0, 12, 1], [281, 410, 1350, 421], [1, 6, 6, 37], [241, 420, 630, 481], [1, 12, 0, 1], [2029, 12, 2028, 13], [426, 505, 1445, 1106]];
sub<GL(2,Integers(2040))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 2040=23⋅3⋅5⋅17, index 96, genus 1, and generators
(1223002039),(11199022031),(82658516351216),(11201),(2811350410421),(16637),(241630420481),(10121),(202920281213),(42614455051106).
The torsion field K:=Q(E[2040]) is a degree-28877783040 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/2040Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
| ℓ |
Reduction type |
Serre weight |
Serre conductor |
| 2 |
split multiplicative |
4 |
25=52 |
| 3 |
nonsplit multiplicative |
4 |
425=52⋅17 |
| 5 |
additive |
14 |
102=2⋅3⋅17 |
| 17 |
split multiplicative |
18 |
150=2⋅3⋅52 |
gp:ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d for d=
2, 3 and 6.
Its isogeny class 2550v
consists of 4 curves linked by isogenies of
degrees dividing 6.
The minimal quadratic twist of this elliptic curve is
102c2, its twist by 5.
The number fields K of degree less than 24 such that
E(K)tors is strictly larger than E(Q)tors
≅Z/2Z
are as follows:
We only show fields where the torsion growth is primitive.
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p-adic regulators
p-adic regulators are not yet computed for curves that are not Γ0-optimal.