Learn more

Refine search


Results (1-50 of 68 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
2550.a1 2550.a 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,40700,54000][1, 1, 0, -40700, 54000] y2+xy=x3+x240700x+54000y^2+xy=x^3+x^2-40700x+54000 5.24.0-5.a.1.1, 408.2.0.?, 2040.48.1.?
2550.a2 2550.a 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,27625,1778825][1, 1, 0, -27625, -1778825] y2+xy=x3+x227625x1778825y^2+xy=x^3+x^2-27625x-1778825 5.24.0-5.a.2.1, 408.2.0.?, 2040.48.1.?
2550.b1 2550.b 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,1310125,577734125][1, 1, 0, -1310125, -577734125] y2+xy=x3+x21310125x577734125y^2+xy=x^3+x^2-1310125x-577734125 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.11, 15.8.0-3.a.1.1, \ldots
2550.b2 2550.b 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,81875,9054375][1, 1, 0, -81875, -9054375] y2+xy=x3+x281875x9054375y^2+xy=x^3+x^2-81875x-9054375 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.1, 15.8.0-3.a.1.1, 30.48.0-30.b.1.2, \ldots
2550.b3 2550.b 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,16375,777875][1, 1, 0, -16375, -777875] y2+xy=x3+x216375x777875y^2+xy=x^3+x^2-16375x-777875 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.5, 15.8.0-3.a.1.2, \ldots
2550.b4 2550.b 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,625,46875][1, 1, 0, 625, -46875] y2+xy=x3+x2+625x46875y^2+xy=x^3+x^2+625x-46875 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.3, 15.8.0-3.a.1.2, 30.48.0-30.b.1.1, \ldots
2550.c1 2550.c 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 6.1120212696.112021269 [1,1,0,693600,222626250][1, 1, 0, -693600, -222626250] y2+xy=x3+x2693600x222626250y^2+xy=x^3+x^2-693600x-222626250 2.3.0.a.1, 4.6.0.c.1, 8.24.0.r.1, 16.48.0.l.2, 20.12.0-4.c.1.1, \ldots
2550.c2 2550.c 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 3.0560106343.056010634 [1,1,0,43350,3492000][1, 1, 0, -43350, -3492000] y2+xy=x3+x243350x3492000y^2+xy=x^3+x^2-43350x-3492000 2.6.0.a.1, 4.12.0.b.1, 8.48.0.e.1, 20.24.0-4.b.1.1, 40.96.0-8.e.1.1, \ldots
2550.c3 2550.c 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 6.1120212696.112021269 [1,1,0,41100,3867750][1, 1, 0, -41100, -3867750] y2+xy=x3+x241100x3867750y^2+xy=x^3+x^2-41100x-3867750 2.3.0.a.1, 4.6.0.c.1, 8.48.0.m.2, 20.12.0-4.c.1.1, 40.96.0-8.m.2.4, \ldots
2550.c4 2550.c 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 1.5280053171.528005317 [1,1,0,2850,49500][1, 1, 0, -2850, -49500] y2+xy=x3+x22850x49500y^2+xy=x^3+x^2-2850x-49500 2.6.0.a.1, 4.12.0.b.1, 8.48.0.h.2, 20.24.0-4.b.1.3, 40.96.0-8.h.2.2, \ldots
2550.c5 2550.c 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 0.7640026580.764002658 [1,1,0,850,8500][1, 1, 0, -850, 8500] y2+xy=x3+x2850x+8500y^2+xy=x^3+x^2-850x+8500 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 16.48.0.bb.1, 20.12.0-4.c.1.2, \ldots
2550.c6 2550.c 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 3.0560106343.056010634 [1,1,0,5650,279000][1, 1, 0, 5650, -279000] y2+xy=x3+x2+5650x279000y^2+xy=x^3+x^2+5650x-279000 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 16.48.0.y.2, 20.12.0-4.c.1.2, \ldots
2550.d1 2550.d 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 1.8230752481.823075248 [1,1,0,4650,123750][1, 1, 0, -4650, -123750] y2+xy=x3+x24650x123750y^2+xy=x^3+x^2-4650x-123750 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0-4.c.1.1, 120.24.0.?, \ldots
2550.d2 2550.d 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 1.8230752481.823075248 [1,1,0,4150,100750][1, 1, 0, -4150, 100750] y2+xy=x3+x24150x+100750y^2+xy=x^3+x^2-4150x+100750 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.2, 120.24.0.?, \ldots
2550.d3 2550.d 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 0.9115376240.911537624 [1,1,0,400,500][1, 1, 0, -400, -500] y2+xy=x3+x2400x500y^2+xy=x^3+x^2-400x-500 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 120.24.0.?, 136.12.0.?, \ldots
2550.d4 2550.d 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 1.8230752481.823075248 [1,1,0,100,0][1, 1, 0, 100, 0] y2+xy=x3+x2+100xy^2+xy=x^3+x^2+100x 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.4, 120.24.0.?, \ldots
2550.e1 2550.e 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,25,75][1, 1, 0, 25, -75] y2+xy=x3+x2+25x75y^2+xy=x^3+x^2+25x-75 408.2.0.?
2550.f1 2550.f 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 5.1996401765.199640176 [1,1,0,48450,3136500][1, 1, 0, -48450, 3136500] y2+xy=x3+x248450x+3136500y^2+xy=x^3+x^2-48450x+3136500 408.2.0.?
2550.g1 2550.g 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 0.9308911080.930891108 [1,1,0,1075,12875][1, 1, 0, -1075, -12875] y2+xy=x3+x21075x12875y^2+xy=x^3+x^2-1075x-12875 408.2.0.?
2550.h1 2550.h 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,0,1,326,1702][1, 0, 1, -326, -1702] y2+xy+y=x3326x1702y^2+xy+y=x^3-326x-1702 408.2.0.?
2550.i1 2550.i 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 0.3116941250.311694125 [1,0,1,3901,83198][1, 0, 1, -3901, 83198] y2+xy+y=x33901x+83198y^2+xy+y=x^3-3901x+83198 2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.?
2550.i2 2550.i 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 0.1558470620.155847062 [1,0,1,349,6698][1, 0, 1, 349, 6698] y2+xy+y=x3+349x+6698y^2+xy+y=x^3+349x+6698 2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.?
2550.j1 2550.j 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 6.3347585166.334758516 [1,0,1,16576,489202][1, 0, 1, -16576, -489202] y2+xy+y=x316576x489202y^2+xy+y=x^3-16576x-489202 3.8.0-3.a.1.1, 408.16.0.?
2550.j2 2550.j 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/3Z\Z/3\Z 2.1115861722.111586172 [1,0,1,7201,234548][1, 0, 1, -7201, 234548] y2+xy+y=x37201x+234548y^2+xy+y=x^3-7201x+234548 3.8.0-3.a.1.2, 408.16.0.?
2550.k1 2550.k 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,0,1,1455988826,21382165598452][1, 0, 1, -1455988826, -21382165598452] y2+xy+y=x31455988826x21382165598452y^2+xy+y=x^3-1455988826x-21382165598452 3.8.0-3.a.1.1, 408.16.0.?
2550.k2 2550.k 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/3Z\Z/3\Z 11 [1,0,1,38539451,48878897798][1, 0, 1, -38539451, 48878897798] y2+xy+y=x338539451x+48878897798y^2+xy+y=x^3-38539451x+48878897798 3.8.0-3.a.1.2, 408.16.0.?
2550.l1 2550.l 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,1,2836751,1839219352][1, 0, 1, -2836751, -1839219352] y2+xy+y=x32836751x1839219352y^2+xy+y=x^3-2836751x-1839219352 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 16.48.0.x.1, 20.12.0-4.c.1.1, \ldots
2550.l2 2550.l 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,1,544001,154390148][1, 0, 1, -544001, 154390148] y2+xy+y=x3544001x+154390148y^2+xy+y=x^3-544001x+154390148 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 20.12.0-4.c.1.2, \ldots
2550.l3 2550.l 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,180501,27656852][1, 0, 1, -180501, -27656852] y2+xy+y=x3180501x27656852y^2+xy+y=x^3-180501x-27656852 2.6.0.a.1, 4.12.0.b.1, 8.48.0.k.2, 20.24.0-4.b.1.1, 40.96.0-8.k.2.2, \ldots
2550.l4 2550.l 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,36001,2110148][1, 0, 1, -36001, 2110148] y2+xy+y=x336001x+2110148y^2+xy+y=x^3-36001x+2110148 2.6.0.a.1, 4.24.0.b.1, 8.48.0.b.1, 20.48.0-4.b.1.1, 24.96.0-8.b.1.9, \ldots
2550.l5 2550.l 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,34001,2410148][1, 0, 1, -34001, 2410148] y2+xy+y=x334001x+2410148y^2+xy+y=x^3-34001x+2410148 2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0.d.1, 20.24.0-4.b.1.3, \ldots
2550.l6 2550.l 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,1,2001,42148][1, 0, 1, -2001, 42148] y2+xy+y=x32001x+42148y^2+xy+y=x^3-2001x+42148 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 20.12.0-4.c.1.2, \ldots
2550.l7 2550.l 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,1,76499,12685148][1, 0, 1, 76499, 12685148] y2+xy+y=x3+76499x+12685148y^2+xy+y=x^3+76499x+12685148 2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.1, 12.24.0-4.d.1.2, 20.24.0-4.d.1.1, \ldots
2550.l8 2550.l 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,1,163749,120604352][1, 0, 1, 163749, -120604352] y2+xy+y=x3+163749x120604352y^2+xy+y=x^3+163749x-120604352 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.1, 16.48.0.u.1, 20.12.0-4.c.1.1, \ldots
2550.m1 2550.m 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 1.2485232801.248523280 [1,0,1,21,32][1, 0, 1, -21, -32] y2+xy+y=x321x32y^2+xy+y=x^3-21x-32 408.2.0.?
2550.n1 2550.n 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,1,163526,25465552][1, 0, 1, -163526, -25465552] y2+xy+y=x3163526x25465552y^2+xy+y=x^3-163526x-25465552 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 40.24.0-8.m.1.2, 136.24.0.?, \ldots
2550.n2 2550.n 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,10526,373552][1, 0, 1, -10526, -373552] y2+xy+y=x310526x373552y^2+xy+y=x^3-10526x-373552 2.6.0.a.1, 8.12.0.b.1, 20.12.0-2.a.1.1, 40.24.0-8.b.1.2, 68.12.0.b.1, \ldots
2550.n3 2550.n 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,1,2526,42448][1, 0, 1, -2526, 42448] y2+xy+y=x32526x+42448y^2+xy+y=x^3-2526x+42448 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 20.12.0-4.c.1.2, 34.6.0.a.1, \ldots
2550.n4 2550.n 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,1,14474,1873552][1, 0, 1, 14474, -1873552] y2+xy+y=x3+14474x1873552y^2+xy+y=x^3+14474x-1873552 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 20.12.0-4.c.1.1, 40.24.0-8.d.1.1, \ldots
2550.o1 2550.o 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,1,181326,29704048][1, 0, 1, -181326, 29704048] y2+xy+y=x3181326x+29704048y^2+xy+y=x^3-181326x+29704048 2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.?
2550.o2 2550.o 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,1,11326,464048][1, 0, 1, -11326, 464048] y2+xy+y=x311326x+464048y^2+xy+y=x^3-11326x+464048 2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.?
2550.p1 2550.p 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,0,1,76,952][1, 0, 1, -76, -952] y2+xy+y=x376x952y^2+xy+y=x^3-76x-952 408.2.0.?
2550.q1 2550.q 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,0,1,351801,97421732][1, 0, 1, -351801, -97421732] y2+xy+y=x3351801x97421732y^2+xy+y=x^3-351801x-97421732 408.2.0.?
2550.r1 2550.r 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,1,3,9][1, 1, 1, -3, -9] y2+xy+y=x3+x23x9y^2+xy+y=x^3+x^2-3x-9 408.2.0.?
2550.s1 2550.s 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 0.4409048490.440904849 [1,1,1,7253,234731][1, 1, 1, -7253, 234731] y2+xy+y=x3+x27253x+234731y^2+xy+y=x^3+x^2-7253x+234731 2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.?
2550.s2 2550.s 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 0.2204524240.220452424 [1,1,1,453,3531][1, 1, 1, -453, 3531] y2+xy+y=x3+x2453x+3531y^2+xy+y=x^3+x^2-453x+3531 2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.?
2550.t1 2550.t 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,1,8795013,12177716469][1, 1, 1, -8795013, -12177716469] y2+xy+y=x3+x28795013x12177716469y^2+xy+y=x^3+x^2-8795013x-12177716469 408.2.0.?
2550.u1 2550.u 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 0.1718359320.171835932 [1,1,1,18763,755719][1, 1, 1, -18763, -755719] y2+xy+y=x3+x218763x755719y^2+xy+y=x^3+x^2-18763x-755719 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.1, \ldots
2550.u2 2550.u 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 0.5155077960.515507796 [1,1,1,6388,193781][1, 1, 1, -6388, 193781] y2+xy+y=x3+x26388x+193781y^2+xy+y=x^3+x^2-6388x+193781 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.2, \ldots
2550.u3 2550.u 235217 2 \cdot 3 \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 1.0310155931.031015593 [1,1,1,5388,257781][1, 1, 1, -5388, 257781] y2+xy+y=x3+x25388x+257781y^2+xy+y=x^3+x^2-5388x+257781 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 15.8.0-3.a.1.2, \ldots
Next   displayed columns for results