Learn more

Refine search


Results (1-50 of 68 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
2550.a1 2550.a \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -40700, 54000]$ \(y^2+xy=x^3+x^2-40700x+54000\) 5.24.0-5.a.1.1, 408.2.0.?, 2040.48.1.?
2550.a2 2550.a \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -27625, -1778825]$ \(y^2+xy=x^3+x^2-27625x-1778825\) 5.24.0-5.a.2.1, 408.2.0.?, 2040.48.1.?
2550.b1 2550.b \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1310125, -577734125]$ \(y^2+xy=x^3+x^2-1310125x-577734125\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.11, 15.8.0-3.a.1.1, $\ldots$
2550.b2 2550.b \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -81875, -9054375]$ \(y^2+xy=x^3+x^2-81875x-9054375\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.1, 15.8.0-3.a.1.1, 30.48.0-30.b.1.2, $\ldots$
2550.b3 2550.b \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -16375, -777875]$ \(y^2+xy=x^3+x^2-16375x-777875\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.5, 15.8.0-3.a.1.2, $\ldots$
2550.b4 2550.b \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 625, -46875]$ \(y^2+xy=x^3+x^2+625x-46875\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.3, 15.8.0-3.a.1.2, 30.48.0-30.b.1.1, $\ldots$
2550.c1 2550.c \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $6.112021269$ $[1, 1, 0, -693600, -222626250]$ \(y^2+xy=x^3+x^2-693600x-222626250\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.r.1, 16.48.0.l.2, 20.12.0-4.c.1.1, $\ldots$
2550.c2 2550.c \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.056010634$ $[1, 1, 0, -43350, -3492000]$ \(y^2+xy=x^3+x^2-43350x-3492000\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.e.1, 20.24.0-4.b.1.1, 40.96.0-8.e.1.1, $\ldots$
2550.c3 2550.c \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $6.112021269$ $[1, 1, 0, -41100, -3867750]$ \(y^2+xy=x^3+x^2-41100x-3867750\) 2.3.0.a.1, 4.6.0.c.1, 8.48.0.m.2, 20.12.0-4.c.1.1, 40.96.0-8.m.2.4, $\ldots$
2550.c4 2550.c \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.528005317$ $[1, 1, 0, -2850, -49500]$ \(y^2+xy=x^3+x^2-2850x-49500\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.h.2, 20.24.0-4.b.1.3, 40.96.0-8.h.2.2, $\ldots$
2550.c5 2550.c \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.764002658$ $[1, 1, 0, -850, 8500]$ \(y^2+xy=x^3+x^2-850x+8500\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 16.48.0.bb.1, 20.12.0-4.c.1.2, $\ldots$
2550.c6 2550.c \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $3.056010634$ $[1, 1, 0, 5650, -279000]$ \(y^2+xy=x^3+x^2+5650x-279000\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 16.48.0.y.2, 20.12.0-4.c.1.2, $\ldots$
2550.d1 2550.d \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.823075248$ $[1, 1, 0, -4650, -123750]$ \(y^2+xy=x^3+x^2-4650x-123750\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0-4.c.1.1, 120.24.0.?, $\ldots$
2550.d2 2550.d \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.823075248$ $[1, 1, 0, -4150, 100750]$ \(y^2+xy=x^3+x^2-4150x+100750\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.2, 120.24.0.?, $\ldots$
2550.d3 2550.d \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.911537624$ $[1, 1, 0, -400, -500]$ \(y^2+xy=x^3+x^2-400x-500\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 120.24.0.?, 136.12.0.?, $\ldots$
2550.d4 2550.d \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.823075248$ $[1, 1, 0, 100, 0]$ \(y^2+xy=x^3+x^2+100x\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.4, 120.24.0.?, $\ldots$
2550.e1 2550.e \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 25, -75]$ \(y^2+xy=x^3+x^2+25x-75\) 408.2.0.?
2550.f1 2550.f \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $5.199640176$ $[1, 1, 0, -48450, 3136500]$ \(y^2+xy=x^3+x^2-48450x+3136500\) 408.2.0.?
2550.g1 2550.g \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.930891108$ $[1, 1, 0, -1075, -12875]$ \(y^2+xy=x^3+x^2-1075x-12875\) 408.2.0.?
2550.h1 2550.h \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -326, -1702]$ \(y^2+xy+y=x^3-326x-1702\) 408.2.0.?
2550.i1 2550.i \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.311694125$ $[1, 0, 1, -3901, 83198]$ \(y^2+xy+y=x^3-3901x+83198\) 2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.?
2550.i2 2550.i \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.155847062$ $[1, 0, 1, 349, 6698]$ \(y^2+xy+y=x^3+349x+6698\) 2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.?
2550.j1 2550.j \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $6.334758516$ $[1, 0, 1, -16576, -489202]$ \(y^2+xy+y=x^3-16576x-489202\) 3.8.0-3.a.1.1, 408.16.0.?
2550.j2 2550.j \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/3\Z$ $2.111586172$ $[1, 0, 1, -7201, 234548]$ \(y^2+xy+y=x^3-7201x+234548\) 3.8.0-3.a.1.2, 408.16.0.?
2550.k1 2550.k \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -1455988826, -21382165598452]$ \(y^2+xy+y=x^3-1455988826x-21382165598452\) 3.8.0-3.a.1.1, 408.16.0.?
2550.k2 2550.k \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -38539451, 48878897798]$ \(y^2+xy+y=x^3-38539451x+48878897798\) 3.8.0-3.a.1.2, 408.16.0.?
2550.l1 2550.l \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2836751, -1839219352]$ \(y^2+xy+y=x^3-2836751x-1839219352\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 16.48.0.x.1, 20.12.0-4.c.1.1, $\ldots$
2550.l2 2550.l \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -544001, 154390148]$ \(y^2+xy+y=x^3-544001x+154390148\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 20.12.0-4.c.1.2, $\ldots$
2550.l3 2550.l \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -180501, -27656852]$ \(y^2+xy+y=x^3-180501x-27656852\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.k.2, 20.24.0-4.b.1.1, 40.96.0-8.k.2.2, $\ldots$
2550.l4 2550.l \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -36001, 2110148]$ \(y^2+xy+y=x^3-36001x+2110148\) 2.6.0.a.1, 4.24.0.b.1, 8.48.0.b.1, 20.48.0-4.b.1.1, 24.96.0-8.b.1.9, $\ldots$
2550.l5 2550.l \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -34001, 2410148]$ \(y^2+xy+y=x^3-34001x+2410148\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0.d.1, 20.24.0-4.b.1.3, $\ldots$
2550.l6 2550.l \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2001, 42148]$ \(y^2+xy+y=x^3-2001x+42148\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 20.12.0-4.c.1.2, $\ldots$
2550.l7 2550.l \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 76499, 12685148]$ \(y^2+xy+y=x^3+76499x+12685148\) 2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.1, 12.24.0-4.d.1.2, 20.24.0-4.d.1.1, $\ldots$
2550.l8 2550.l \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 163749, -120604352]$ \(y^2+xy+y=x^3+163749x-120604352\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.1, 16.48.0.u.1, 20.12.0-4.c.1.1, $\ldots$
2550.m1 2550.m \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $1.248523280$ $[1, 0, 1, -21, -32]$ \(y^2+xy+y=x^3-21x-32\) 408.2.0.?
2550.n1 2550.n \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -163526, -25465552]$ \(y^2+xy+y=x^3-163526x-25465552\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 40.24.0-8.m.1.2, 136.24.0.?, $\ldots$
2550.n2 2550.n \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -10526, -373552]$ \(y^2+xy+y=x^3-10526x-373552\) 2.6.0.a.1, 8.12.0.b.1, 20.12.0-2.a.1.1, 40.24.0-8.b.1.2, 68.12.0.b.1, $\ldots$
2550.n3 2550.n \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2526, 42448]$ \(y^2+xy+y=x^3-2526x+42448\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 20.12.0-4.c.1.2, 34.6.0.a.1, $\ldots$
2550.n4 2550.n \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 14474, -1873552]$ \(y^2+xy+y=x^3+14474x-1873552\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 20.12.0-4.c.1.1, 40.24.0-8.d.1.1, $\ldots$
2550.o1 2550.o \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -181326, 29704048]$ \(y^2+xy+y=x^3-181326x+29704048\) 2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.?
2550.o2 2550.o \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -11326, 464048]$ \(y^2+xy+y=x^3-11326x+464048\) 2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.?
2550.p1 2550.p \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -76, -952]$ \(y^2+xy+y=x^3-76x-952\) 408.2.0.?
2550.q1 2550.q \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -351801, -97421732]$ \(y^2+xy+y=x^3-351801x-97421732\) 408.2.0.?
2550.r1 2550.r \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -3, -9]$ \(y^2+xy+y=x^3+x^2-3x-9\) 408.2.0.?
2550.s1 2550.s \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.440904849$ $[1, 1, 1, -7253, 234731]$ \(y^2+xy+y=x^3+x^2-7253x+234731\) 2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.?
2550.s2 2550.s \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.220452424$ $[1, 1, 1, -453, 3531]$ \(y^2+xy+y=x^3+x^2-453x+3531\) 2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.?
2550.t1 2550.t \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -8795013, -12177716469]$ \(y^2+xy+y=x^3+x^2-8795013x-12177716469\) 408.2.0.?
2550.u1 2550.u \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.171835932$ $[1, 1, 1, -18763, -755719]$ \(y^2+xy+y=x^3+x^2-18763x-755719\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.1, $\ldots$
2550.u2 2550.u \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.515507796$ $[1, 1, 1, -6388, 193781]$ \(y^2+xy+y=x^3+x^2-6388x+193781\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.2, $\ldots$
2550.u3 2550.u \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.031015593$ $[1, 1, 1, -5388, 257781]$ \(y^2+xy+y=x^3+x^2-5388x+257781\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 15.8.0-3.a.1.2, $\ldots$
Next   displayed columns for results