Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
2550.a1 |
2550f2 |
2550.a |
2550f |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{5} \cdot 3^{5} \cdot 5^{8} \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.2 |
5B.1.4 |
$2040$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$18000$ |
$1.689508$ |
$19088138515945/11040808032$ |
$1.11667$ |
$5.54009$ |
$[1, 1, 0, -40700, 54000]$ |
\(y^2+xy=x^3+x^2-40700x+54000\) |
5.24.0-5.a.1.1, 408.2.0.?, 2040.48.1.? |
$[]$ |
2550.a2 |
2550f1 |
2550.a |
2550f |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2 \cdot 3 \cdot 5^{4} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.4 |
5B.1.3 |
$2040$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$3600$ |
$0.884790$ |
$3730569358698025/102$ |
$1.02324$ |
$5.39188$ |
$[1, 1, 0, -27625, -1778825]$ |
\(y^2+xy=x^3+x^2-27625x-1778825\) |
5.24.0-5.a.2.1, 408.2.0.?, 2040.48.1.? |
$[]$ |
2550.b1 |
2550d4 |
2550.b |
2550d |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2 \cdot 3^{2} \cdot 5^{8} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$20736$ |
$1.876299$ |
$15916310615119911121/2210850$ |
$1.02634$ |
$6.86787$ |
$[1, 1, 0, -1310125, -577734125]$ |
\(y^2+xy=x^3+x^2-1310125x-577734125\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.11, 15.8.0-3.a.1.1, $\ldots$ |
$[]$ |
2550.b2 |
2550d3 |
2550.b |
2550d |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{2} \cdot 3 \cdot 5^{7} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$10368$ |
$1.529724$ |
$-3884775383991601/1448254140$ |
$0.99304$ |
$5.80750$ |
$[1, 1, 0, -81875, -9054375]$ |
\(y^2+xy=x^3+x^2-81875x-9054375\) |
2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.1, 15.8.0-3.a.1.1, 30.48.0-30.b.1.2, $\ldots$ |
$[]$ |
2550.b3 |
2550d2 |
2550.b |
2550d |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{3} \cdot 3^{6} \cdot 5^{12} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$6912$ |
$1.326992$ |
$31080575499121/1549125000$ |
$0.96847$ |
$5.19187$ |
$[1, 1, 0, -16375, -777875]$ |
\(y^2+xy=x^3+x^2-16375x-777875\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.5, 15.8.0-3.a.1.2, $\ldots$ |
$[]$ |
2550.b4 |
2550d1 |
2550.b |
2550d |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{6} \cdot 3^{3} \cdot 5^{9} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$3456$ |
$0.980419$ |
$1723683599/62424000$ |
$0.97642$ |
$4.46779$ |
$[1, 1, 0, 625, -46875]$ |
\(y^2+xy=x^3+x^2+625x-46875\) |
2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.3, 15.8.0-3.a.1.2, 30.48.0-30.b.1.1, $\ldots$ |
$[]$ |
2550.c1 |
2550b5 |
2550.c |
2550b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2 \cdot 3^{2} \cdot 5^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.213 |
2B |
$1360$ |
$192$ |
$1$ |
$6.112021269$ |
$1$ |
|
$2$ |
$16384$ |
$1.651796$ |
$2361739090258884097/5202$ |
$1.06083$ |
$6.62463$ |
$[1, 1, 0, -693600, -222626250]$ |
\(y^2+xy=x^3+x^2-693600x-222626250\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.r.1, 16.48.0.l.2, 20.12.0-4.c.1.1, $\ldots$ |
$[(1775, 63475)]$ |
2550.c2 |
2550b3 |
2550.c |
2550b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{2} \cdot 3^{4} \cdot 5^{6} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.137 |
2Cs |
$680$ |
$192$ |
$1$ |
$3.056010634$ |
$1$ |
|
$8$ |
$8192$ |
$1.305223$ |
$576615941610337/27060804$ |
$1.03156$ |
$5.56421$ |
$[1, 1, 0, -43350, -3492000]$ |
\(y^2+xy=x^3+x^2-43350x-3492000\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.e.1, 20.24.0-4.b.1.1, 40.96.0-8.e.1.1, $\ldots$ |
$[(-121, 70)]$ |
2550.c3 |
2550b6 |
2550.c |
2550b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2 \cdot 3^{2} \cdot 5^{6} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.224 |
2B |
$1360$ |
$192$ |
$1$ |
$6.112021269$ |
$1$ |
|
$2$ |
$16384$ |
$1.651796$ |
$-491411892194497/125563633938$ |
$1.03624$ |
$5.59045$ |
$[1, 1, 0, -41100, -3867750]$ |
\(y^2+xy=x^3+x^2-41100x-3867750\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0.m.2, 20.12.0-4.c.1.1, 40.96.0-8.m.2.4, $\ldots$ |
$[(329, 4120)]$ |
2550.c4 |
2550b2 |
2550.c |
2550b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.89 |
2Cs |
$680$ |
$192$ |
$1$ |
$1.528005317$ |
$1$ |
|
$12$ |
$4096$ |
$0.958650$ |
$163936758817/30338064$ |
$1.07571$ |
$4.52321$ |
$[1, 1, 0, -2850, -49500]$ |
\(y^2+xy=x^3+x^2-2850x-49500\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.h.2, 20.24.0-4.b.1.3, 40.96.0-8.h.2.2, $\ldots$ |
$[(-40, 70)]$ |
2550.c5 |
2550b1 |
2550.c |
2550b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.101 |
2B |
$1360$ |
$192$ |
$1$ |
$0.764002658$ |
$1$ |
|
$9$ |
$2048$ |
$0.612077$ |
$4354703137/352512$ |
$1.05192$ |
$4.06065$ |
$[1, 1, 0, -850, 8500]$ |
\(y^2+xy=x^3+x^2-850x+8500\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 16.48.0.bb.1, 20.12.0-4.c.1.2, $\ldots$ |
$[(4, 70)]$ |
2550.c6 |
2550b4 |
2550.c |
2550b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{2} \cdot 3^{16} \cdot 5^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.132 |
2B |
$1360$ |
$192$ |
$1$ |
$3.056010634$ |
$1$ |
|
$4$ |
$8192$ |
$1.305223$ |
$1276229915423/2927177028$ |
$1.03010$ |
$4.92333$ |
$[1, 1, 0, 5650, -279000]$ |
\(y^2+xy=x^3+x^2+5650x-279000\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 16.48.0.y.2, 20.12.0-4.c.1.2, $\ldots$ |
$[(45, 240)]$ |
2550.d1 |
2550a3 |
2550.d |
2550a |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2 \cdot 3^{4} \cdot 5^{10} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2040$ |
$48$ |
$0$ |
$1.823075248$ |
$1$ |
|
$4$ |
$3072$ |
$0.880094$ |
$711882749089/1721250$ |
$1.00970$ |
$4.71042$ |
$[1, 1, 0, -4650, -123750]$ |
\(y^2+xy=x^3+x^2-4650x-123750\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0-4.c.1.1, 120.24.0.?, $\ldots$ |
$[(-39, 6)]$ |
2550.d2 |
2550a4 |
2550.d |
2550a |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2 \cdot 3 \cdot 5^{7} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2040$ |
$48$ |
$0$ |
$1.823075248$ |
$1$ |
|
$4$ |
$3072$ |
$0.880094$ |
$506071034209/2505630$ |
$0.93940$ |
$4.66691$ |
$[1, 1, 0, -4150, 100750]$ |
\(y^2+xy=x^3+x^2-4150x+100750\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.2, 120.24.0.?, $\ldots$ |
$[(45, 65)]$ |
2550.d3 |
2550a2 |
2550.d |
2550a |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{2} \cdot 3^{2} \cdot 5^{8} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$2040$ |
$48$ |
$0$ |
$0.911537624$ |
$1$ |
|
$14$ |
$1536$ |
$0.533520$ |
$454756609/260100$ |
$1.06745$ |
$3.77263$ |
$[1, 1, 0, -400, -500]$ |
\(y^2+xy=x^3+x^2-400x-500\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 120.24.0.?, 136.12.0.?, $\ldots$ |
$[(-5, 40)]$ |
2550.d4 |
2550a1 |
2550.d |
2550a |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3 \cdot 5^{7} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2040$ |
$48$ |
$0$ |
$1.823075248$ |
$1$ |
|
$5$ |
$768$ |
$0.186946$ |
$6967871/4080$ |
$0.91966$ |
$3.23992$ |
$[1, 1, 0, 100, 0]$ |
\(y^2+xy=x^3+x^2+100x\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.4, 120.24.0.?, $\ldots$ |
$[(4, 20)]$ |
2550.e1 |
2550e1 |
2550.e |
2550e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{7} \cdot 3 \cdot 5^{4} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$504$ |
$-0.047725$ |
$2595575/6528$ |
$0.89849$ |
$2.85763$ |
$[1, 1, 0, 25, -75]$ |
\(y^2+xy=x^3+x^2+25x-75\) |
408.2.0.? |
$[]$ |
2550.f1 |
2550c1 |
2550.f |
2550c |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{13} \cdot 3^{7} \cdot 5^{10} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$5.199640176$ |
$1$ |
|
$2$ |
$21840$ |
$1.680628$ |
$1288009359025/304570368$ |
$1.16064$ |
$5.60675$ |
$[1, 1, 0, -48450, 3136500]$ |
\(y^2+xy=x^3+x^2-48450x+3136500\) |
408.2.0.? |
$[(71, 211)]$ |
2550.g1 |
2550g1 |
2550.g |
2550g |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{3} \cdot 3^{5} \cdot 5^{8} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$0.930891108$ |
$1$ |
|
$4$ |
$3600$ |
$0.678421$ |
$352224985/33048$ |
$0.89416$ |
$4.15042$ |
$[1, 1, 0, -1075, -12875]$ |
\(y^2+xy=x^3+x^2-1075x-12875\) |
408.2.0.? |
$[(-15, 20)]$ |
2550.h1 |
2550i1 |
2550.h |
2550i |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2 \cdot 3 \cdot 5^{10} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1680$ |
$0.435541$ |
$390625/102$ |
$1.04069$ |
$3.69333$ |
$[1, 0, 1, -326, -1702]$ |
\(y^2+xy+y=x^3-326x-1702\) |
408.2.0.? |
$[]$ |
2550.i1 |
2550m2 |
2550.i |
2550m |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2 \cdot 3^{10} \cdot 5^{8} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$0.311694125$ |
$1$ |
|
$10$ |
$3840$ |
$1.013269$ |
$420021471169/50191650$ |
$0.94166$ |
$4.64315$ |
$[1, 0, 1, -3901, 83198]$ |
\(y^2+xy+y=x^3-3901x+83198\) |
2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.? |
$[(-8, 341)]$ |
2550.i2 |
2550m1 |
2550.i |
2550m |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{2} \cdot 3^{5} \cdot 5^{7} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$0.155847062$ |
$1$ |
|
$15$ |
$1920$ |
$0.666697$ |
$302111711/1404540$ |
$0.92029$ |
$3.96918$ |
$[1, 0, 1, 349, 6698]$ |
\(y^2+xy+y=x^3+349x+6698\) |
2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.? |
$[(-3, 76)]$ |
2550.j1 |
2550n2 |
2550.j |
2550n |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{15} \cdot 3 \cdot 5^{8} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$408$ |
$16$ |
$0$ |
$6.334758516$ |
$1$ |
|
$0$ |
$10800$ |
$1.438982$ |
$1289333385625/482967552$ |
$1.04029$ |
$5.19651$ |
$[1, 0, 1, -16576, -489202]$ |
\(y^2+xy+y=x^3-16576x-489202\) |
3.8.0-3.a.1.1, 408.16.0.? |
$[(-441/2, 713/2)]$ |
2550.j2 |
2550n1 |
2550.j |
2550n |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{5} \cdot 3^{3} \cdot 5^{8} \cdot 17 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$408$ |
$16$ |
$0$ |
$2.111586172$ |
$1$ |
|
$8$ |
$3600$ |
$0.889676$ |
$105695235625/14688$ |
$1.21157$ |
$4.87762$ |
$[1, 0, 1, -7201, 234548]$ |
\(y^2+xy+y=x^3-7201x+234548\) |
3.8.0-3.a.1.2, 408.16.0.? |
$[(46, 11)]$ |
2550.k1 |
2550o2 |
2550.k |
2550o |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{51} \cdot 3^{7} \cdot 5^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$408$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1285200$ |
$3.932297$ |
$873851835888094527083289145/83719665273003835392$ |
$1.08087$ |
$9.55022$ |
$[1, 0, 1, -1455988826, -21382165598452]$ |
\(y^2+xy+y=x^3-1455988826x-21382165598452\) |
3.8.0-3.a.1.1, 408.16.0.? |
$[]$ |
2550.k2 |
2550o1 |
2550.k |
2550o |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{17} \cdot 3^{21} \cdot 5^{8} \cdot 17^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$408$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$428400$ |
$3.382992$ |
$16206164115169540524745/6736014906011025408$ |
$1.07254$ |
$8.16120$ |
$[1, 0, 1, -38539451, 48878897798]$ |
\(y^2+xy+y=x^3-38539451x+48878897798\) |
3.8.0-3.a.1.2, 408.16.0.? |
$[]$ |
2550.l1 |
2550h7 |
2550.l |
2550h |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2 \cdot 3^{16} \cdot 5^{10} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.97 |
2B |
$8160$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$0$ |
$49152$ |
$2.291458$ |
$161572377633716256481/914742821250$ |
$1.03379$ |
$7.16333$ |
$[1, 0, 1, -2836751, -1839219352]$ |
\(y^2+xy+y=x^3-2836751x-1839219352\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 16.48.0.x.1, 20.12.0-4.c.1.1, $\ldots$ |
$[]$ |
2550.l2 |
2550h4 |
2550.l |
2550h |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{4} \cdot 3 \cdot 5^{7} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.8 |
2B |
$8160$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$0$ |
$12288$ |
$1.598312$ |
$1139466686381936641/4080$ |
$1.01700$ |
$6.53171$ |
$[1, 0, 1, -544001, 154390148]$ |
\(y^2+xy+y=x^3-544001x+154390148\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 20.12.0-4.c.1.2, $\ldots$ |
$[]$ |
2550.l3 |
2550h5 |
2550.l |
2550h |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{2} \cdot 3^{8} \cdot 5^{14} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.91 |
2Cs |
$4080$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$2$ |
$24576$ |
$1.944885$ |
$41623544884956481/2962701562500$ |
$1.00549$ |
$6.10976$ |
$[1, 0, 1, -180501, -27656852]$ |
\(y^2+xy+y=x^3-180501x-27656852\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.k.2, 20.24.0-4.b.1.1, 40.96.0-8.k.2.2, $\ldots$ |
$[]$ |
2550.l4 |
2550h3 |
2550.l |
2550h |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{10} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.50 |
2Cs |
$4080$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$2$ |
$12288$ |
$1.598312$ |
$330240275458561/67652010000$ |
$1.06774$ |
$5.49315$ |
$[1, 0, 1, -36001, 2110148]$ |
\(y^2+xy+y=x^3-36001x+2110148\) |
2.6.0.a.1, 4.24.0.b.1, 8.48.0.b.1, 20.48.0-4.b.1.1, 24.96.0-8.b.1.9, $\ldots$ |
$[]$ |
2550.l5 |
2550h2 |
2550.l |
2550h |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{8} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.6 |
2Cs |
$4080$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$2$ |
$6144$ |
$1.251738$ |
$278202094583041/16646400$ |
$0.97964$ |
$5.47129$ |
$[1, 0, 1, -34001, 2410148]$ |
\(y^2+xy+y=x^3-34001x+2410148\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0.d.1, 20.24.0-4.b.1.3, $\ldots$ |
$[]$ |
2550.l6 |
2550h1 |
2550.l |
2550h |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{16} \cdot 3 \cdot 5^{7} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.8 |
2B |
$8160$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$1$ |
$3072$ |
$0.905165$ |
$-56667352321/16711680$ |
$1.00176$ |
$4.44029$ |
$[1, 0, 1, -2001, 42148]$ |
\(y^2+xy+y=x^3-2001x+42148\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 20.12.0-4.c.1.2, $\ldots$ |
$[]$ |
2550.l7 |
2550h6 |
2550.l |
2550h |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{2} \cdot 3^{2} \cdot 5^{8} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.199 |
2B |
$8160$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$0$ |
$24576$ |
$1.944885$ |
$3168685387909439/6278181696900$ |
$1.01379$ |
$5.89430$ |
$[1, 0, 1, 76499, 12685148]$ |
\(y^2+xy+y=x^3+76499x+12685148\) |
2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.1, 12.24.0-4.d.1.2, 20.24.0-4.d.1.1, $\ldots$ |
$[]$ |
2550.l8 |
2550h8 |
2550.l |
2550h |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2 \cdot 3^{4} \cdot 5^{22} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.144 |
2B |
$8160$ |
$768$ |
$13$ |
$1$ |
$4$ |
$2$ |
$0$ |
$49152$ |
$2.291458$ |
$31077313442863199/420227050781250$ |
$1.04291$ |
$6.46869$ |
$[1, 0, 1, 163749, -120604352]$ |
\(y^2+xy+y=x^3+163749x-120604352\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.1, 16.48.0.u.1, 20.12.0-4.c.1.1, $\ldots$ |
$[]$ |
2550.m1 |
2550l1 |
2550.m |
2550l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{7} \cdot 3 \cdot 5^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$1.248523280$ |
$1$ |
|
$2$ |
$336$ |
$-0.279240$ |
$38226865/6528$ |
$0.86981$ |
$2.63620$ |
$[1, 0, 1, -21, -32]$ |
\(y^2+xy+y=x^3-21x-32\) |
408.2.0.? |
$[(-2, 2)]$ |
2550.n1 |
2550k3 |
2550.n |
2550k |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{3} \cdot 3^{2} \cdot 5^{14} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$680$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$18432$ |
$1.605251$ |
$30949975477232209/478125000$ |
$1.00249$ |
$6.07199$ |
$[1, 0, 1, -163526, -25465552]$ |
\(y^2+xy+y=x^3-163526x-25465552\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 40.24.0-8.m.1.2, 136.24.0.?, $\ldots$ |
$[]$ |
2550.n2 |
2550k2 |
2550.n |
2550k |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{6} \cdot 3^{4} \cdot 5^{10} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.4 |
2Cs |
$680$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$9216$ |
$1.258678$ |
$8253429989329/936360000$ |
$0.96220$ |
$5.02282$ |
$[1, 0, 1, -10526, -373552]$ |
\(y^2+xy+y=x^3-10526x-373552\) |
2.6.0.a.1, 8.12.0.b.1, 20.12.0-2.a.1.1, 40.24.0-8.b.1.2, 68.12.0.b.1, $\ldots$ |
$[]$ |
2550.n3 |
2550k1 |
2550.n |
2550k |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{8} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$680$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4608$ |
$0.912105$ |
$114013572049/15667200$ |
$0.93207$ |
$4.47691$ |
$[1, 0, 1, -2526, 42448]$ |
\(y^2+xy+y=x^3-2526x+42448\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 20.12.0-4.c.1.2, 34.6.0.a.1, $\ldots$ |
$[]$ |
2550.n4 |
2550k4 |
2550.n |
2550k |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{3} \cdot 3^{8} \cdot 5^{8} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.16 |
2B |
$680$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18432$ |
$1.605251$ |
$21464092074671/109596256200$ |
$1.00093$ |
$5.40693$ |
$[1, 0, 1, 14474, -1873552]$ |
\(y^2+xy+y=x^3+14474x-1873552\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 20.12.0-4.c.1.1, 40.24.0-8.d.1.1, $\ldots$ |
$[]$ |
2550.o1 |
2550p2 |
2550.o |
2550p |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{9} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12800$ |
$1.453606$ |
$337575153545189/2448$ |
$1.21783$ |
$6.11151$ |
$[1, 0, 1, -181326, 29704048]$ |
\(y^2+xy+y=x^3-181326x+29704048\) |
2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.? |
$[]$ |
2550.o2 |
2550p1 |
2550.o |
2550p |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3 \cdot 5^{9} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$6400$ |
$1.107033$ |
$-82256120549/221952$ |
$0.95304$ |
$5.05144$ |
$[1, 0, 1, -11326, 464048]$ |
\(y^2+xy+y=x^3-11326x+464048\) |
2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.? |
$[]$ |
2550.p1 |
2550q1 |
2550.p |
2550q |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2 \cdot 3^{3} \cdot 5^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1800$ |
$0.324481$ |
$-121945/918$ |
$0.85539$ |
$3.47106$ |
$[1, 0, 1, -76, -952]$ |
\(y^2+xy+y=x^3-76x-952\) |
408.2.0.? |
$[]$ |
2550.q1 |
2550j1 |
2550.q |
2550j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{15} \cdot 3^{23} \cdot 5^{2} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$57960$ |
$2.192535$ |
$-192607474931043120625/52443022624653312$ |
$1.09001$ |
$6.41416$ |
$[1, 0, 1, -351801, -97421732]$ |
\(y^2+xy+y=x^3-351801x-97421732\) |
408.2.0.? |
$[]$ |
2550.r1 |
2550t1 |
2550.r |
2550t |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2 \cdot 3^{3} \cdot 5^{2} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$360$ |
$-0.480238$ |
$-121945/918$ |
$0.85539$ |
$2.23995$ |
$[1, 1, 1, -3, -9]$ |
\(y^2+xy+y=x^3+x^2-3x-9\) |
408.2.0.? |
$[]$ |
2550.s1 |
2550x2 |
2550.s |
2550x |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$0.440904849$ |
$1$ |
|
$8$ |
$2560$ |
$0.648888$ |
$337575153545189/2448$ |
$1.21783$ |
$4.88040$ |
$[1, 1, 1, -7253, 234731]$ |
\(y^2+xy+y=x^3+x^2-7253x+234731\) |
2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.? |
$[(45, 22)]$ |
2550.s2 |
2550x1 |
2550.s |
2550x |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3 \cdot 5^{3} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$0.220452424$ |
$1$ |
|
$11$ |
$1280$ |
$0.302314$ |
$-82256120549/221952$ |
$0.95304$ |
$3.82033$ |
$[1, 1, 1, -453, 3531]$ |
\(y^2+xy+y=x^3+x^2-453x+3531\) |
2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.? |
$[(9, 12)]$ |
2550.t1 |
2550z1 |
2550.t |
2550z |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{15} \cdot 3^{23} \cdot 5^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$289800$ |
$2.997257$ |
$-192607474931043120625/52443022624653312$ |
$1.09001$ |
$7.64526$ |
$[1, 1, 1, -8795013, -12177716469]$ |
\(y^2+xy+y=x^3+x^2-8795013x-12177716469\) |
408.2.0.? |
$[]$ |
2550.u1 |
2550v3 |
2550.u |
2550v |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{18} \cdot 3^{2} \cdot 5^{6} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$0.171835932$ |
$1$ |
|
$17$ |
$10368$ |
$1.446146$ |
$46753267515625/11591221248$ |
$1.08666$ |
$5.24392$ |
$[1, 1, 1, -18763, -755719]$ |
\(y^2+xy+y=x^3+x^2-18763x-755719\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.1, $\ldots$ |
$[(-61, 438)]$ |
2550.u2 |
2550v1 |
2550.u |
2550v |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( 2^{6} \cdot 3^{6} \cdot 5^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$0.515507796$ |
$1$ |
|
$9$ |
$3456$ |
$0.896839$ |
$1845026709625/793152$ |
$1.00293$ |
$4.83183$ |
$[1, 1, 1, -6388, 193781]$ |
\(y^2+xy+y=x^3+x^2-6388x+193781\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.2, $\ldots$ |
$[(41, 33)]$ |
2550.u3 |
2550v2 |
2550.u |
2550v |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{3} \cdot 3^{12} \cdot 5^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$1.031015593$ |
$1$ |
|
$6$ |
$6912$ |
$1.243412$ |
$-1107111813625/1228691592$ |
$1.01884$ |
$4.90323$ |
$[1, 1, 1, -5388, 257781]$ |
\(y^2+xy+y=x^3+x^2-5388x+257781\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 15.8.0-3.a.1.2, $\ldots$ |
$[(15, 417)]$ |