Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2-693600x-222626250\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z-693600xz^2-222626250z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-898906275x-10373366729250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(1775, 63475)$ | $6.1120212696049813780449313239$ | $\infty$ |
| $(-1925/4, 1925/8)$ | $0$ | $2$ |
Integral points
\( \left(1775, 63475\right) \), \( \left(1775, -65250\right) \)
Invariants
| Conductor: | $N$ | = | \( 2550 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $81281250$ | = | $2 \cdot 3^{2} \cdot 5^{6} \cdot 17^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{2361739090258884097}{5202} \) | = | $2^{-1} \cdot 3^{-2} \cdot 17^{-2} \cdot 97^{3} \cdot 13729^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6517972418585224415382067233$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.84707828564147225423782705669$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0608330168932623$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.624625205802894$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.1120212696049813780449313239$ |
|
| Real period: | $\Omega$ | ≈ | $0.16543302156772393743281003549$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot2\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.0222602930338966537438773361 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.022260293 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.165433 \cdot 6.112021 \cdot 8}{2^2} \\ & \approx 2.022260293\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 16384 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $17$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | $\ell$-adic index |
|---|---|---|---|
| $2$ | 2B | 16.48.0.213 | $48$ |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1360 = 2^{4} \cdot 5 \cdot 17 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 15 & 2 \\ 1262 & 1347 \end{array}\right),\left(\begin{array}{rr} 356 & 885 \\ 295 & 146 \end{array}\right),\left(\begin{array}{rr} 543 & 0 \\ 0 & 1359 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1345 & 16 \\ 1344 & 17 \end{array}\right),\left(\begin{array}{rr} 1271 & 560 \\ 230 & 121 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 1356 & 1357 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 141 & 560 \\ 320 & 501 \end{array}\right)$.
The torsion field $K:=\Q(E[1360])$ is a degree-$4812963840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1360\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 25 = 5^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 850 = 2 \cdot 5^{2} \cdot 17 \) |
| $5$ | additive | $14$ | \( 102 = 2 \cdot 3 \cdot 17 \) |
| $17$ | nonsplit multiplicative | $18$ | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 2550b
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 102b5, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-10}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-5}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{-5})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-5}, \sqrt{17})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-5}, \sqrt{34})\) | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.212336640000.33 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.3421020160000.5 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.2.147954945870000.11 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | add | ss | ord | ord | nonsplit | ord | ss | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 3 | 7 | - | 1,1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 3 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | 3 | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.