y 2 + x y + y = x 3 + x 2 − 6388 x + 193781 y^2+xy+y=x^3+x^2-6388x+193781 y 2 + x y + y = x 3 + x 2 − 6 3 8 8 x + 1 9 3 7 8 1
(homogenize , simplify )
y 2 z + x y z + y z 2 = x 3 + x 2 z − 6388 x z 2 + 193781 z 3 y^2z+xyz+yz^2=x^3+x^2z-6388xz^2+193781z^3 y 2 z + x y z + y z 2 = x 3 + x 2 z − 6 3 8 8 x z 2 + 1 9 3 7 8 1 z 3
(dehomogenize , simplify )
y 2 = x 3 − 8278875 x + 9165237750 y^2=x^3-8278875x+9165237750 y 2 = x 3 − 8 2 7 8 8 7 5 x + 9 1 6 5 2 3 7 7 5 0
(homogenize , minimize )
sage: E = EllipticCurve([1, 1, 1, -6388, 193781])
gp: E = ellinit([1, 1, 1, -6388, 193781])
magma: E := EllipticCurve([1, 1, 1, -6388, 193781]);
oscar: E = elliptic_curve([1, 1, 1, -6388, 193781])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 41 , 33 ) (41, 33) ( 4 1 , 3 3 ) 0.51550779686912789602572667363 0.51550779686912789602572667363 0 . 5 1 5 5 0 7 7 9 6 8 6 9 1 2 7 8 9 6 0 2 5 7 2 6 6 7 3 6 3 ∞ \infty ∞
( 45 , − 23 ) (45, -23) ( 4 5 , − 2 3 ) 0 0 0 2 2 2
( − 5 , 477 ) \left(-5, 477\right) ( − 5 , 4 7 7 ) , ( − 5 , − 473 ) \left(-5, -473\right) ( − 5 , − 4 7 3 ) , ( 41 , 33 ) \left(41, 33\right) ( 4 1 , 3 3 ) , ( 41 , − 75 ) \left(41, -75\right) ( 4 1 , − 7 5 ) , ( 45 , − 23 ) \left(45, -23\right) ( 4 5 , − 2 3 ) , ( 49 , 13 ) \left(49, 13\right) ( 4 9 , 1 3 ) , ( 49 , − 63 ) \left(49, -63\right) ( 4 9 , − 6 3 ) , ( 95 , 627 ) \left(95, 627\right) ( 9 5 , 6 2 7 ) , ( 95 , − 723 ) \left(95, -723\right) ( 9 5 , − 7 2 3 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
2550 2550 2 5 5 0 = 2 ⋅ 3 ⋅ 5 2 ⋅ 17 2 \cdot 3 \cdot 5^{2} \cdot 17 2 ⋅ 3 ⋅ 5 2 ⋅ 1 7
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
12393000000 12393000000 1 2 3 9 3 0 0 0 0 0 0 = 2 6 ⋅ 3 6 ⋅ 5 6 ⋅ 17 2^{6} \cdot 3^{6} \cdot 5^{6} \cdot 17 2 6 ⋅ 3 6 ⋅ 5 6 ⋅ 1 7
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
1845026709625 793152 \frac{1845026709625}{793152} 7 9 3 1 5 2 1 8 4 5 0 2 6 7 0 9 6 2 5 = 2 − 6 ⋅ 3 − 6 ⋅ 5 3 ⋅ 1 1 3 ⋅ 1 7 − 1 ⋅ 22 3 3 2^{-6} \cdot 3^{-6} \cdot 5^{3} \cdot 11^{3} \cdot 17^{-1} \cdot 223^{3} 2 − 6 ⋅ 3 − 6 ⋅ 5 3 ⋅ 1 1 3 ⋅ 1 7 − 1 ⋅ 2 2 3 3
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 0.89683913256441499615093490604 0.89683913256441499615093490604 0 . 8 9 6 8 3 9 1 3 2 5 6 4 4 1 4 9 9 6 1 5 0 9 3 4 9 0 6 0 4
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.092120176347364808850555239427 0.092120176347364808850555239427 0 . 0 9 2 1 2 0 1 7 6 3 4 7 3 6 4 8 0 8 8 5 0 5 5 5 2 3 9 4 2 7
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.002934967692302 1.002934967692302 1 . 0 0 2 9 3 4 9 6 7 6 9 2 3 0 2
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.831829895382748 4.831829895382748 4 . 8 3 1 8 2 9 8 9 5 3 8 2 7 4 8
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.51550779686912789602572667363 0.51550779686912789602572667363 0 . 5 1 5 5 0 7 7 9 6 8 6 9 1 2 7 8 9 6 0 2 5 7 2 6 6 7 3 6 3
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 1.2459661389615911073025018135 1.2459661389615911073025018135 1 . 2 4 5 9 6 6 1 3 8 9 6 1 5 9 1 1 0 7 3 0 2 5 0 1 8 1 3 5
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 24 24 2 4
= ( 2 ⋅ 3 ) ⋅ 2 ⋅ 2 ⋅ 1 ( 2 \cdot 3 )\cdot2\cdot2\cdot1 ( 2 ⋅ 3 ) ⋅ 2 ⋅ 2 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 3.8538315556177409355221884997 3.8538315556177409355221884997 3 . 8 5 3 8 3 1 5 5 5 6 1 7 7 4 0 9 3 5 5 2 2 1 8 8 4 9 9 7
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
3.853831556 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 1.245966 ⋅ 0.515508 ⋅ 24 2 2 ≈ 3.853831556 \begin{aligned} 3.853831556 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.245966 \cdot 0.515508 \cdot 24}{2^2} \\ & \approx 3.853831556\end{aligned} 3 . 8 5 3 8 3 1 5 5 6 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 1 . 2 4 5 9 6 6 ⋅ 0 . 5 1 5 5 0 8 ⋅ 2 4 ≈ 3 . 8 5 3 8 3 1 5 5 6
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, 1, 1, -6388, 193781]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, 1, 1, -6388, 193781]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
2550.2.a.u
q + q 2 − q 3 + q 4 − q 6 − 2 q 7 + q 8 + q 9 − q 12 − 2 q 13 − 2 q 14 + q 16 + q 17 + q 18 − 4 q 19 + O ( q 20 ) q + q^{2} - q^{3} + q^{4} - q^{6} - 2 q^{7} + q^{8} + q^{9} - q^{12} - 2 q^{13} - 2 q^{14} + q^{16} + q^{17} + q^{18} - 4 q^{19} + O(q^{20}) q + q 2 − q 3 + q 4 − q 6 − 2 q 7 + q 8 + q 9 − q 1 2 − 2 q 1 3 − 2 q 1 4 + q 1 6 + q 1 7 + q 1 8 − 4 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[1021, 420, 1230, 481], [2029, 12, 2028, 13], [281, 410, 1350, 421], [11, 2, 1990, 2031], [1551, 1210, 1670, 101], [1223, 0, 0, 2039], [1, 12, 0, 1], [1, 6, 6, 37], [1, 0, 12, 1], [1186, 1635, 1245, 1216]]
GL(2,Integers(2040)).subgroup(gens)
magma: Gens := [[1021, 420, 1230, 481], [2029, 12, 2028, 13], [281, 410, 1350, 421], [11, 2, 1990, 2031], [1551, 1210, 1670, 101], [1223, 0, 0, 2039], [1, 12, 0, 1], [1, 6, 6, 37], [1, 0, 12, 1], [1186, 1635, 1245, 1216]];
sub<GL(2,Integers(2040))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 2040 = 2 3 ⋅ 3 ⋅ 5 ⋅ 17 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 2 0 4 0 = 2 3 ⋅ 3 ⋅ 5 ⋅ 1 7 , index 96 96 9 6 , genus 1 1 1 , and generators
( 1021 420 1230 481 ) , ( 2029 12 2028 13 ) , ( 281 410 1350 421 ) , ( 11 2 1990 2031 ) , ( 1551 1210 1670 101 ) , ( 1223 0 0 2039 ) , ( 1 12 0 1 ) , ( 1 6 6 37 ) , ( 1 0 12 1 ) , ( 1186 1635 1245 1216 ) \left(\begin{array}{rr}
1021 & 420 \\
1230 & 481
\end{array}\right),\left(\begin{array}{rr}
2029 & 12 \\
2028 & 13
\end{array}\right),\left(\begin{array}{rr}
281 & 410 \\
1350 & 421
\end{array}\right),\left(\begin{array}{rr}
11 & 2 \\
1990 & 2031
\end{array}\right),\left(\begin{array}{rr}
1551 & 1210 \\
1670 & 101
\end{array}\right),\left(\begin{array}{rr}
1223 & 0 \\
0 & 2039
\end{array}\right),\left(\begin{array}{rr}
1 & 12 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 6 \\
6 & 37
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
12 & 1
\end{array}\right),\left(\begin{array}{rr}
1186 & 1635 \\
1245 & 1216
\end{array}\right) ( 1 0 2 1 1 2 3 0 4 2 0 4 8 1 ) , ( 2 0 2 9 2 0 2 8 1 2 1 3 ) , ( 2 8 1 1 3 5 0 4 1 0 4 2 1 ) , ( 1 1 1 9 9 0 2 2 0 3 1 ) , ( 1 5 5 1 1 6 7 0 1 2 1 0 1 0 1 ) , ( 1 2 2 3 0 0 2 0 3 9 ) , ( 1 0 1 2 1 ) , ( 1 6 6 3 7 ) , ( 1 1 2 0 1 ) , ( 1 1 8 6 1 2 4 5 1 6 3 5 1 2 1 6 ) .
The torsion field K : = Q ( E [ 2040 ] ) K:=\Q(E[2040]) K : = Q ( E [ 2 0 4 0 ] ) is a degree-28877783040 28877783040 2 8 8 7 7 7 8 3 0 4 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 2040 Z ) \GL_2(\Z/2040\Z) GL 2 ( Z / 2 0 4 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
split multiplicative
4 4 4
425 = 5 2 ⋅ 17 425 = 5^{2} \cdot 17 4 2 5 = 5 2 ⋅ 1 7
3 3 3
nonsplit multiplicative
4 4 4
425 = 5 2 ⋅ 17 425 = 5^{2} \cdot 17 4 2 5 = 5 2 ⋅ 1 7
5 5 5
additive
14 14 1 4
102 = 2 ⋅ 3 ⋅ 17 102 = 2 \cdot 3 \cdot 17 1 0 2 = 2 ⋅ 3 ⋅ 1 7
17 17 1 7
split multiplicative
18 18 1 8
150 = 2 ⋅ 3 ⋅ 5 2 150 = 2 \cdot 3 \cdot 5^{2} 1 5 0 = 2 ⋅ 3 ⋅ 5 2
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2, 3 and 6.
Its isogeny class 2550.u
consists of 4 curves linked by isogenies of
degrees dividing 6.
The minimal quadratic twist of this elliptic curve is
102.b2 , its twist by 5 5 5 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
7
13
19
23
29
31
41
43
47
53
59
61
67
71
73
79
83
89
97