Properties

Label 254898.hk
Number of curves $4$
Conductor $254898$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 254898.hk have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(7\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 254898.hk do not have complex multiplication.

Modular form 254898.2.a.hk

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 2 q^{5} + q^{8} + 2 q^{10} + 6 q^{13} + q^{16} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 254898.hk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
254898.hk1 254898hk4 \([1, -1, 1, -9302684, -10602637027]\) \(211293405175481/6973568802\) \(2938445381097133547346\) \([2]\) \(18432000\) \(2.8925\)  
254898.hk2 254898hk3 \([1, -1, 1, -9227714, -10786883299]\) \(206226044828441/236196\) \(99525661098312708\) \([2]\) \(9216000\) \(2.5459\)  
254898.hk3 254898hk2 \([1, -1, 1, -1280894, 558296813]\) \(551569744601/2592\) \(1092188324810016\) \([2]\) \(3686400\) \(2.0878\)  
254898.hk4 254898hk1 \([1, -1, 1, -81374, 8436845]\) \(141420761/9216\) \(3883336265991168\) \([2]\) \(1843200\) \(1.7412\) \(\Gamma_0(N)\)-optimal