Properties

Label 25410.x
Number of curves $4$
Conductor $25410$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 25410.x have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 25410.x do not have complex multiplication.

Modular form 25410.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + q^{10} + q^{12} + 4 q^{13} + q^{14} - q^{15} + q^{16} - q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 25410.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25410.x1 25410x3 \([1, 0, 1, -2935584, 1935685882]\) \(1579250141304807889/41926500\) \(74275352266500\) \([2]\) \(622080\) \(2.1757\)  
25410.x2 25410x4 \([1, 0, 1, -2931954, 1940712706]\) \(-1573398910560073969/8138108343750\) \(-14417155355562093750\) \([2]\) \(1244160\) \(2.5222\)  
25410.x3 25410x1 \([1, 0, 1, -38844, 2249146]\) \(3658671062929/880165440\) \(1559266767051840\) \([2]\) \(207360\) \(1.6264\) \(\Gamma_0(N)\)-optimal
25410.x4 25410x2 \([1, 0, 1, 91836, 14167162]\) \(48351870250991/76871856600\) \(-136183183150152600\) \([2]\) \(414720\) \(1.9729\)