Properties

Label 25410.bg
Number of curves $4$
Conductor $25410$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 25410.bg have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 25410.bg do not have complex multiplication.

Modular form 25410.2.a.bg

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + q^{10} + q^{12} + 6 q^{13} - q^{14} - q^{15} + q^{16} + 6 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 25410.bg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25410.bg1 25410bg4 \([1, 0, 1, -11716554, -15437422244]\) \(100407751863770656369/166028940000\) \(294130394975340000\) \([2]\) \(1228800\) \(2.6146\)  
25410.bg2 25410bg2 \([1, 0, 1, -739434, -236306468]\) \(25238585142450289/995844326400\) \(1764198970721510400\) \([2, 2]\) \(614400\) \(2.2681\)  
25410.bg3 25410bg1 \([1, 0, 1, -119914, 11005916]\) \(107639597521009/32699842560\) \(57929765785436160\) \([2]\) \(307200\) \(1.9215\) \(\Gamma_0(N)\)-optimal
25410.bg4 25410bg3 \([1, 0, 1, 325366, -860705188]\) \(2150235484224911/181905111732960\) \(-322256001646754350560\) \([2]\) \(1228800\) \(2.6146\)