Show commands: SageMath
Rank
The elliptic curves in class 25410.bg have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 25410.bg do not have complex multiplication.Modular form 25410.2.a.bg
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 25410.bg
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
25410.bg1 | 25410bg4 | \([1, 0, 1, -11716554, -15437422244]\) | \(100407751863770656369/166028940000\) | \(294130394975340000\) | \([2]\) | \(1228800\) | \(2.6146\) | |
25410.bg2 | 25410bg2 | \([1, 0, 1, -739434, -236306468]\) | \(25238585142450289/995844326400\) | \(1764198970721510400\) | \([2, 2]\) | \(614400\) | \(2.2681\) | |
25410.bg3 | 25410bg1 | \([1, 0, 1, -119914, 11005916]\) | \(107639597521009/32699842560\) | \(57929765785436160\) | \([2]\) | \(307200\) | \(1.9215\) | \(\Gamma_0(N)\)-optimal |
25410.bg4 | 25410bg3 | \([1, 0, 1, 325366, -860705188]\) | \(2150235484224911/181905111732960\) | \(-322256001646754350560\) | \([2]\) | \(1228800\) | \(2.6146\) |