Show commands: SageMath
Rank
The elliptic curves in class 254016du have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 254016du do not have complex multiplication.Modular form 254016.2.a.du
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 7 & 21 \\ 3 & 1 & 21 & 7 \\ 7 & 21 & 1 & 3 \\ 21 & 7 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 254016du
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 254016.du4 | 254016du1 | \([0, 0, 0, 8820, 49392]\) | \(3375/2\) | \(-44966148046848\) | \([]\) | \(414720\) | \(1.3091\) | \(\Gamma_0(N)\)-optimal |
| 254016.du3 | 254016du2 | \([0, 0, 0, -132300, 19411056]\) | \(-140625/8\) | \(-14569031967178752\) | \([]\) | \(1244160\) | \(1.8584\) | |
| 254016.du1 | 254016du3 | \([0, 0, 0, -3378060, -2389733136]\) | \(-189613868625/128\) | \(-2877833474998272\) | \([]\) | \(2903040\) | \(2.2820\) | |
| 254016.du2 | 254016du4 | \([0, 0, 0, -2672460, -3415901328]\) | \(-1159088625/2097152\) | \(-3819184316004106764288\) | \([]\) | \(8709120\) | \(2.8313\) |