Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+37800x+10584000\)
|
(homogenize, simplify) |
\(y^2z=x^3+37800xz^2+10584000z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+37800x+10584000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(840, 25200)$ | $1.8272703391150742253421103663$ | $\infty$ |
Integral points
\((840,\pm 25200)\)
Invariants
Conductor: | $N$ | = | \( 25401600 \) | = | $2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2}$ |
|
Discriminant: | $\Delta$ | = | $-51849745920000000$ | = | $-1 \cdot 2^{15} \cdot 3^{10} \cdot 5^{7} \cdot 7^{3} $ |
|
j-invariant: | $j$ | = | \( \frac{576}{5} \) | = | $2^{6} \cdot 3^{2} \cdot 5^{-1}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8885778078657321191146635415$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.1845629018718361073962988269$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.506451419864909$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.6904390171817876$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.8272703391150742253421103663$ |
|
Real period: | $\Omega$ | ≈ | $0.26009392747769893721304946144$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 24 $ = $ 2\cdot3\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $11.406286057534715019885884242 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 11.406286058 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.260094 \cdot 1.827270 \cdot 24}{1^2} \\ & \approx 11.406286058\end{aligned}$$
Modular invariants
Modular form 25401600.2.a.r
For more coefficients, see the Downloads section to the right.
Modular degree: | 191102976 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III^{*}$ | additive | -1 | 8 | 15 | 0 |
$3$ | $3$ | $IV^{*}$ | additive | 1 | 4 | 10 | 0 |
$5$ | $2$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
$7$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 280 = 2^{3} \cdot 5 \cdot 7 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 279 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 141 & 2 \\ 141 & 3 \end{array}\right),\left(\begin{array}{rr} 71 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 279 & 2 \\ 278 & 3 \end{array}\right),\left(\begin{array}{rr} 241 & 2 \\ 241 & 3 \end{array}\right),\left(\begin{array}{rr} 57 & 2 \\ 57 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[280])$ is a degree-$743178240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 14175 = 3^{4} \cdot 5^{2} \cdot 7 \) |
$3$ | additive | $4$ | \( 4480 = 2^{7} \cdot 5 \cdot 7 \) |
$5$ | additive | $18$ | \( 1016064 = 2^{8} \cdot 3^{4} \cdot 7^{2} \) |
$7$ | additive | $20$ | \( 518400 = 2^{8} \cdot 3^{4} \cdot 5^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 25401600.r consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 5080320.c1, its twist by $5$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.