| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 5080320.b1 |
- |
5080320.b |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5 \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1.351128517$ |
$1$ |
|
$2$ |
$27869184$ |
$1.710239$ |
$576/5$ |
$0.50645$ |
$2.83227$ |
$[0, 0, 0, 18522, 3630312]$ |
\(y^2=x^3+18522x+3630312\) |
280.2.0.? |
$[(147, 3087)]$ |
| 5080320.c1 |
- |
5080320.c |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5 \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$2.982442625$ |
$1$ |
|
$2$ |
$7962624$ |
$1.083858$ |
$576/5$ |
$0.50645$ |
$2.34548$ |
$[0, 0, 0, 1512, 84672]$ |
\(y^2=x^3+1512x+84672\) |
280.2.0.? |
$[(112, 1288)]$ |
| 5080320.d1 |
- |
5080320.d |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5 \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1327104$ |
$0.187979$ |
$576/5$ |
$0.50645$ |
$1.64924$ |
$[0, 0, 0, 42, -392]$ |
\(y^2=x^3+42x-392\) |
280.2.0.? |
$[ ]$ |
| 5080320.e1 |
- |
5080320.e |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18579456$ |
$1.507507$ |
$576/5$ |
$0.50645$ |
$2.67472$ |
$[0, 0, 0, 8232, -1075648]$ |
\(y^2=x^3+8232x-1075648\) |
280.2.0.? |
$[ ]$ |
| 5080320.db1 |
- |
5080320.db |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5 \cdot 7^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$29.66160868$ |
$1$ |
|
$2$ |
$27869184$ |
$1.710239$ |
$576/5$ |
$0.50645$ |
$2.83227$ |
$[0, 0, 0, 18522, -3630312]$ |
\(y^2=x^3+18522x-3630312\) |
280.2.0.? |
$[(196, 2744), (157882/37, 10083898/37)]$ |
| 5080320.dc1 |
- |
5080320.dc |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5 \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7962624$ |
$1.083858$ |
$576/5$ |
$0.50645$ |
$2.34548$ |
$[0, 0, 0, 1512, -84672]$ |
\(y^2=x^3+1512x-84672\) |
280.2.0.? |
$[ ]$ |
| 5080320.dd1 |
- |
5080320.dd |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5 \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$2.154594974$ |
$1$ |
|
$2$ |
$1327104$ |
$0.187979$ |
$576/5$ |
$0.50645$ |
$1.64924$ |
$[0, 0, 0, 42, 392]$ |
\(y^2=x^3+42x+392\) |
280.2.0.? |
$[(2, 22)]$ |
| 5080320.de1 |
- |
5080320.de |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$8.383350756$ |
$1$ |
|
$0$ |
$18579456$ |
$1.507507$ |
$576/5$ |
$0.50645$ |
$2.67472$ |
$[0, 0, 0, 8232, 1075648]$ |
\(y^2=x^3+8232x+1075648\) |
280.2.0.? |
$[(22344/37, 55818448/37)]$ |
| 5080320.dh1 |
- |
5080320.dh |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1.139900230$ |
$1$ |
|
$2$ |
$2654208$ |
$0.534553$ |
$576/5$ |
$0.50645$ |
$1.91858$ |
$[0, 0, 0, 168, 3136]$ |
\(y^2=x^3+168x+3136\) |
280.2.0.? |
$[(0, 56)]$ |
| 5080320.di1 |
- |
5080320.di |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5 \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$3.658692108$ |
$1$ |
|
$0$ |
$9289728$ |
$1.160934$ |
$576/5$ |
$0.50645$ |
$2.40538$ |
$[0, 0, 0, 2058, 134456]$ |
\(y^2=x^3+2058x+134456\) |
280.2.0.? |
$[(-245/3, 6517/3)]$ |
| 5080320.dj1 |
- |
5080320.dj |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5 \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$55738368$ |
$2.056812$ |
$576/5$ |
$0.50645$ |
$3.10162$ |
$[0, 0, 0, 74088, -29042496]$ |
\(y^2=x^3+74088x-29042496\) |
280.2.0.? |
$[ ]$ |
| 5080320.dk1 |
- |
5080320.dk |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5 \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3981312$ |
$0.737286$ |
$576/5$ |
$0.50645$ |
$2.07613$ |
$[0, 0, 0, 378, -10584]$ |
\(y^2=x^3+378x-10584\) |
280.2.0.? |
$[ ]$ |
| 5080320.gh1 |
- |
5080320.gh |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2654208$ |
$0.534553$ |
$576/5$ |
$0.50645$ |
$1.91858$ |
$[0, 0, 0, 168, -3136]$ |
\(y^2=x^3+168x-3136\) |
280.2.0.? |
$[ ]$ |
| 5080320.gi1 |
- |
5080320.gi |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5 \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$9289728$ |
$1.160934$ |
$576/5$ |
$0.50645$ |
$2.40538$ |
$[0, 0, 0, 2058, -134456]$ |
\(y^2=x^3+2058x-134456\) |
280.2.0.? |
$[ ]$ |
| 5080320.gj1 |
- |
5080320.gj |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5 \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$19.58944347$ |
$1$ |
|
$0$ |
$55738368$ |
$2.056812$ |
$576/5$ |
$0.50645$ |
$3.10162$ |
$[0, 0, 0, 74088, 29042496]$ |
\(y^2=x^3+74088x+29042496\) |
280.2.0.? |
$[(15205063384/2743, 1895115461130640/2743)]$ |
| 5080320.gk1 |
- |
5080320.gk |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5 \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1.725883128$ |
$1$ |
|
$2$ |
$3981312$ |
$0.737286$ |
$576/5$ |
$0.50645$ |
$2.07613$ |
$[0, 0, 0, 378, 10584]$ |
\(y^2=x^3+378x+10584\) |
280.2.0.? |
$[(-6, 90)]$ |
| 25401600.i1 |
- |
25401600.i |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{7} \cdot 7^{3} \) |
$3$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$4.736266127$ |
$1$ |
|
$24$ |
$95551488$ |
$1.542004$ |
$576/5$ |
$0.50645$ |
$2.44652$ |
$[0, 0, 0, 9450, -1323000]$ |
\(y^2=x^3+9450x-1323000\) |
280.2.0.? |
$[(210, 3150), (84, 252), (660, 17100)]$ |
| 25401600.j1 |
- |
25401600.j |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{7} \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$445906944$ |
$2.312225$ |
$576/5$ |
$0.50645$ |
$2.98860$ |
$[0, 0, 0, 205800, -134456000]$ |
\(y^2=x^3+205800x-134456000\) |
280.2.0.? |
$[ ]$ |
| 25401600.k1 |
- |
25401600.k |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{7} \cdot 7^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$7.785737679$ |
$1$ |
|
$4$ |
$31850496$ |
$0.992698$ |
$576/5$ |
$0.50645$ |
$2.05992$ |
$[0, 0, 0, 1050, -49000]$ |
\(y^2=x^3+1050x-49000\) |
280.2.0.? |
$[(35, 175), (2660, 137200)]$ |
| 25401600.l1 |
- |
25401600.l |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{7} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$11.00495965$ |
$1$ |
|
$0$ |
$1337720832$ |
$2.861534$ |
$576/5$ |
$0.50645$ |
$3.37520$ |
$[0, 0, 0, 1852200, -3630312000]$ |
\(y^2=x^3+1852200x-3630312000\) |
280.2.0.? |
$[(4128985/58, 4328634275/58)]$ |
| 25401600.q1 |
- |
25401600.q |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{7} \cdot 7^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$7.006811170$ |
$1$ |
|
$4$ |
$222953472$ |
$1.965652$ |
$576/5$ |
$0.50645$ |
$2.74468$ |
$[0, 0, 0, 51450, 16807000]$ |
\(y^2=x^3+51450x+16807000\) |
280.2.0.? |
$[(-735/2, 8575/2), (490/3, 120050/3)]$ |
| 25401600.r1 |
- |
25401600.r |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{7} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1.827270339$ |
$1$ |
|
$2$ |
$191102976$ |
$1.888578$ |
$576/5$ |
$0.50645$ |
$2.69044$ |
$[0, 0, 0, 37800, 10584000]$ |
\(y^2=x^3+37800x+10584000\) |
280.2.0.? |
$[(840, 25200)]$ |
| 25401600.s1 |
- |
25401600.s |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{7} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$9.178546752$ |
$1$ |
|
$0$ |
$668860416$ |
$2.514957$ |
$576/5$ |
$0.50645$ |
$3.13129$ |
$[0, 0, 0, 463050, 453789000]$ |
\(y^2=x^3+463050x+453789000\) |
280.2.0.? |
$[(6274/3, 901718/3)]$ |
| 25401600.t1 |
- |
25401600.t |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{7} \cdot 7^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$4.768361487$ |
$1$ |
|
$4$ |
$63700992$ |
$1.339272$ |
$576/5$ |
$0.50645$ |
$2.30384$ |
$[0, 0, 0, 4200, 392000]$ |
\(y^2=x^3+4200x+392000\) |
280.2.0.? |
$[(-40, 400), (56, 896)]$ |
| 25401600.um1 |
- |
25401600.um |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{7} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$11.71341176$ |
$1$ |
|
$0$ |
$445906944$ |
$2.312225$ |
$576/5$ |
$0.50645$ |
$2.98860$ |
$[0, 0, 0, 205800, 134456000]$ |
\(y^2=x^3+205800x+134456000\) |
280.2.0.? |
$[(6302576/17, 15826099576/17)]$ |
| 25401600.un1 |
- |
25401600.un |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{7} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$95551488$ |
$1.542004$ |
$576/5$ |
$0.50645$ |
$2.44652$ |
$[0, 0, 0, 9450, 1323000]$ |
\(y^2=x^3+9450x+1323000\) |
280.2.0.? |
$[ ]$ |
| 25401600.uo1 |
- |
25401600.uo |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{7} \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1337720832$ |
$2.861534$ |
$576/5$ |
$0.50645$ |
$3.37520$ |
$[0, 0, 0, 1852200, 3630312000]$ |
\(y^2=x^3+1852200x+3630312000\) |
280.2.0.? |
$[ ]$ |
| 25401600.up1 |
- |
25401600.up |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{7} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$3.071333899$ |
$1$ |
|
$2$ |
$31850496$ |
$0.992698$ |
$576/5$ |
$0.50645$ |
$2.05992$ |
$[0, 0, 0, 1050, 49000]$ |
\(y^2=x^3+1050x+49000\) |
280.2.0.? |
$[(-21, 133)]$ |
| 25401600.uu1 |
- |
25401600.uu |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{7} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$191102976$ |
$1.888578$ |
$576/5$ |
$0.50645$ |
$2.69044$ |
$[0, 0, 0, 37800, -10584000]$ |
\(y^2=x^3+37800x-10584000\) |
280.2.0.? |
$[ ]$ |
| 25401600.uv1 |
- |
25401600.uv |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{7} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$8.459928723$ |
$1$ |
|
$0$ |
$222953472$ |
$1.965652$ |
$576/5$ |
$0.50645$ |
$2.74468$ |
$[0, 0, 0, 51450, -16807000]$ |
\(y^2=x^3+51450x-16807000\) |
280.2.0.? |
$[(18715/9, 1985075/9)]$ |
| 25401600.uw1 |
- |
25401600.uw |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{7} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$2.616141255$ |
$1$ |
|
$2$ |
$63700992$ |
$1.339272$ |
$576/5$ |
$0.50645$ |
$2.30384$ |
$[0, 0, 0, 4200, -392000]$ |
\(y^2=x^3+4200x-392000\) |
280.2.0.? |
$[(240, 3800)]$ |
| 25401600.ux1 |
- |
25401600.ux |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{7} \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$668860416$ |
$2.514957$ |
$576/5$ |
$0.50645$ |
$3.13129$ |
$[0, 0, 0, 463050, -453789000]$ |
\(y^2=x^3+463050x-453789000\) |
280.2.0.? |
$[ ]$ |