Properties

Label 25350.cr
Number of curves $1$
Conductor $25350$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 25350.cr1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 25350.cr do not have complex multiplication.

Modular form 25350.2.a.cr

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} - 4 q^{7} + q^{8} + q^{9} + 5 q^{11} + q^{12} - 4 q^{14} + q^{16} + 2 q^{17} + q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 25350.cr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25350.cr1 25350dn1 \([1, 0, 0, -9383, 357057]\) \(-895973/24\) \(-2447192163000\) \([]\) \(82368\) \(1.1592\) \(\Gamma_0(N)\)-optimal