Properties

Label 25350.r
Number of curves $4$
Conductor $25350$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 25350.r have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 25350.r do not have complex multiplication.

Modular form 25350.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + 2 q^{7} - q^{8} + q^{9} - q^{12} - 2 q^{14} + q^{16} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 25350.r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25350.r1 25350c4 \([1, 1, 0, -3686640025, -86158675326875]\) \(73474353581350183614361/576510977802240\) \(43479818378978941440000000\) \([2]\) \(17418240\) \(4.0926\)  
25350.r2 25350c3 \([1, 1, 0, -225520025, -1406229886875]\) \(-16818951115904497561/1592332281446400\) \(-120091934173062758400000000\) \([2]\) \(8709120\) \(3.7460\)  
25350.r3 25350c2 \([1, 1, 0, -67610650, 8027072500]\) \(453198971846635561/261896250564000\) \(19751924676383910562500000\) \([2]\) \(5806080\) \(3.5433\)  
25350.r4 25350c1 \([1, 1, 0, 16889350, 1013572500]\) \(7064514799444439/4094064000000\) \(-308769765027750000000000\) \([2]\) \(2903040\) \(3.1967\) \(\Gamma_0(N)\)-optimal