Learn more

Refine search


Results (1-50 of 139 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
249690.a1 249690.a 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,1,0,1260378,545151852][1, 1, 0, -1260378, -545151852] y2+xy=x3+x21260378x545151852y^2+xy=x^3+x^2-1260378x-545151852 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 820.12.0.?, 1624.24.0.?, \ldots
249690.a2 249690.a 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,1,0,209498,25704852][1, 1, 0, -209498, 25704852] y2+xy=x3+x2209498x+25704852y^2+xy=x^3+x^2-209498x+25704852 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 812.12.0.?, 1624.24.0.?, \ldots
249690.a3 249690.a 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,0,79578,8360172][1, 1, 0, -79578, -8360172] y2+xy=x3+x279578x8360172y^2+xy=x^3+x^2-79578x-8360172 2.6.0.a.1, 8.12.0-2.a.1.1, 812.12.0.?, 820.12.0.?, 1624.24.0.?, \ldots
249690.a4 249690.a 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,1,0,2342,479468][1, 1, 0, 2342, -479468] y2+xy=x3+x2+2342x479468y^2+xy=x^3+x^2+2342x-479468 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 812.12.0.?, 820.12.0.?, \ldots
249690.b1 249690.b 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 trivial\mathsf{trivial} 11 [1,1,0,122503,15753973][1, 1, 0, -122503, 15753973] y2+xy=x3+x2122503x+15753973y^2+xy=x^3+x^2-122503x+15753973 998760.2.0.?
249690.c1 249690.c 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 trivial\mathsf{trivial} 11 [1,1,0,21670317,4147190037][1, 1, 0, 21670317, 4147190037] y2+xy=x3+x2+21670317x+4147190037y^2+xy=x^3+x^2+21670317x+4147190037 199752.2.0.?
249690.d1 249690.d 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 trivial\mathsf{trivial} 11 [1,1,0,863723413,9769990800493][1, 1, 0, -863723413, 9769990800493] y2+xy=x3+x2863723413x+9769990800493y^2+xy=x^3+x^2-863723413x+9769990800493 166460.2.0.?
249690.e1 249690.e 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,1,0,158949723,771259043133][1, 1, 0, -158949723, 771259043133] y2+xy=x3+x2158949723x+771259043133y^2+xy=x^3+x^2-158949723x+771259043133 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 280.12.0.?, 328.12.0.?, \ldots
249690.e2 249690.e 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,0,9991803,11901358557][1, 1, 0, -9991803, 11901358557] y2+xy=x3+x29991803x+11901358557y^2+xy=x^3+x^2-9991803x+11901358557 2.6.0.a.1, 12.12.0-2.a.1.1, 140.12.0.?, 328.12.0.?, 420.24.0.?, \ldots
249690.e3 249690.e 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,1,0,1385083,356332067][1, 1, 0, -1385083, -356332067] y2+xy=x3+x21385083x356332067y^2+xy=x^3+x^2-1385083x-356332067 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 140.12.0.?, 210.6.0.?, \ldots
249690.e4 249690.e 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,1,0,1258597,37208008317][1, 1, 0, 1258597, 37208008317] y2+xy=x3+x2+1258597x+37208008317y^2+xy=x^3+x^2+1258597x+37208008317 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 140.12.0.?, 328.12.0.?, \ldots
249690.f1 249690.f 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,1,0,583963,119850257][1, 1, 0, -583963, -119850257] y2+xy=x3+x2583963x119850257y^2+xy=x^3+x^2-583963x-119850257 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 24.24.0-24.bb.1.16, 812.12.0.?, \ldots
249690.f2 249690.f 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,0,533213,150066807][1, 1, 0, -533213, -150066807] y2+xy=x3+x2533213x150066807y^2+xy=x^3+x^2-533213x-150066807 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.a.1.3, 812.12.0.?, \ldots
249690.f3 249690.f 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,1,0,533193,150078603][1, 1, 0, -533193, -150078603] y2+xy=x3+x2533193x150078603y^2+xy=x^3+x^2-533193x-150078603 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.2, 24.24.0-24.bb.1.2, \ldots
249690.f4 249690.f 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,1,0,482783,179528013][1, 1, 0, -482783, -179528013] y2+xy=x3+x2482783x179528013y^2+xy=x^3+x^2-482783x-179528013 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 12.12.0-4.c.1.1, 24.24.0-24.v.1.4, \ldots
249690.g1 249690.g 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 22 Z/2Z\Z/2\Z 7.0382678827.038267882 [1,1,0,413,2307][1, 1, 0, -413, -2307] y2+xy=x3+x2413x2307y^2+xy=x^3+x^2-413x-2307 2.3.0.a.1, 20.6.0.b.1, 49938.6.0.?, 499380.12.0.?
249690.g2 249690.g 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 22 Z/2Z\Z/2\Z 1.7595669701.759566970 [1,1,0,1187,14147][1, 1, 0, 1187, -14147] y2+xy=x3+x2+1187x14147y^2+xy=x^3+x^2+1187x-14147 2.3.0.a.1, 20.6.0.a.1, 99876.6.0.?, 499380.12.0.?
249690.h1 249690.h 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 11 trivial\mathsf{trivial} 0.6329145850.632914585 [1,1,0,221797,36890509][1, 1, 0, -221797, 36890509] y2+xy=x3+x2221797x+36890509y^2+xy=x^3+x^2-221797x+36890509 998760.2.0.?
249690.i1 249690.i 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 22 trivial\mathsf{trivial} 0.4462980060.446298006 [1,1,0,55073,3461951][1, 1, 0, 55073, -3461951] y2+xy=x3+x2+55073x3461951y^2+xy=x^3+x^2+55073x-3461951 16646.2.0.?
249690.j1 249690.j 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 trivial\mathsf{trivial} 11 [1,1,0,7,5579][1, 1, 0, -7, -5579] y2+xy=x3+x27x5579y^2+xy=x^3+x^2-7x-5579 499380.2.0.?
249690.k1 249690.k 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 22 Z/2Z\Z/2\Z 5.9876996975.987699697 [1,1,0,85472,7887354][1, 1, 0, -85472, -7887354] y2+xy=x3+x285472x7887354y^2+xy=x^3+x^2-85472x-7887354 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.1, 168.12.0.?, 840.24.0.?, \ldots
249690.k2 249690.k 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 22 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 1.4969249241.496924924 [1,1,0,26022,1493856][1, 1, 0, -26022, 1493856] y2+xy=x3+x226022x+1493856y^2+xy=x^3+x^2-26022x+1493856 2.6.0.a.1, 40.12.0-2.a.1.1, 84.12.0.?, 840.24.0.?, 4756.12.0.?, \ldots
249690.k3 249690.k 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 22 Z/2Z\Z/2\Z 1.4969249241.496924924 [1,1,0,25522,1558756][1, 1, 0, -25522, 1558756] y2+xy=x3+x225522x+1558756y^2+xy=x^3+x^2-25522x+1558756 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.4, 84.12.0.?, 840.24.0.?, \ldots
249690.k4 249690.k 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 22 Z/2Z\Z/2\Z 5.9876996975.987699697 [1,1,0,25428,6731466][1, 1, 0, 25428, 6731466] y2+xy=x3+x2+25428x+6731466y^2+xy=x^3+x^2+25428x+6731466 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.2, 84.12.0.?, 840.24.0.?, \ldots
249690.l1 249690.l 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 11 Z/2Z\Z/2\Z 34.4897077134.48970771 [1,0,1,190169334995329,1009389629523115878452][1, 0, 1, -190169334995329, 1009389629523115878452] y2+xy+y=x3190169334995329x+1009389629523115878452y^2+xy+y=x^3-190169334995329x+1009389629523115878452 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 812.12.0.?, 1624.24.0.?, \ldots
249690.l2 249690.l 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 11 Z/2Z\Z/2\Z 34.4897077134.48970771 [1,0,1,11923841870209,15665066209482655796][1, 0, 1, -11923841870209, 15665066209482655796] y2+xy+y=x311923841870209x+15665066209482655796y^2+xy+y=x^3-11923841870209x+15665066209482655796 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 820.12.0.?, 1624.24.0.?, \ldots
249690.l3 249690.l 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 17.2448538517.24485385 [1,0,1,11885583950209,15771710788912543796][1, 0, 1, -11885583950209, 15771710788912543796] y2+xy+y=x311885583950209x+15771710788912543796y^2+xy+y=x^3-11885583950209x+15771710788912543796 2.6.0.a.1, 8.12.0-2.a.1.1, 812.12.0.?, 820.12.0.?, 1624.24.0.?, \ldots
249690.l4 249690.l 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 11 Z/2Z\Z/2\Z 34.4897077134.48970771 [1,0,1,740458389889,248097826814556212][1, 0, 1, -740458389889, 248097826814556212] y2+xy+y=x3740458389889x+248097826814556212y^2+xy+y=x^3-740458389889x+248097826814556212 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 812.12.0.?, 820.12.0.?, \ldots
249690.m1 249690.m 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 22 trivial\mathsf{trivial} 6.7501328386.750132838 [1,0,1,9236384,10802526446][1, 0, 1, -9236384, 10802526446] y2+xy+y=x39236384x+10802526446y^2+xy+y=x^3-9236384x+10802526446 166460.2.0.?
249690.n1 249690.n 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 11 trivial\mathsf{trivial} 3.7026646783.702664678 [1,0,1,29849,1912228][1, 0, 1, -29849, -1912228] y2+xy+y=x329849x1912228y^2+xy+y=x^3-29849x-1912228 998760.2.0.?
249690.o1 249690.o 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/3Z\Z/3\Z 11 [1,0,1,97546811559,11726473602941482][1, 0, 1, -97546811559, 11726473602941482] y2+xy+y=x397546811559x+11726473602941482y^2+xy+y=x^3-97546811559x+11726473602941482 3.8.0-3.a.1.2, 199752.16.0.?
249690.o2 249690.o 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 trivial\mathsf{trivial} 11 [1,0,1,97538669574,11728529023821016][1, 0, 1, -97538669574, 11728529023821016] y2+xy+y=x397538669574x+11728529023821016y^2+xy+y=x^3-97538669574x+11728529023821016 3.8.0-3.a.1.1, 199752.16.0.?
249690.p1 249690.p 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,0,1,22315934,31759654768][1, 0, 1, -22315934, -31759654768] y2+xy+y=x322315934x31759654768y^2+xy+y=x^3-22315934x-31759654768 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 1624.6.0.?, 2460.48.0.?, \ldots
249690.p2 249690.p 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/6Z\Z/6\Z 11 [1,0,1,7200119,7432249826][1, 0, 1, -7200119, 7432249826] y2+xy+y=x37200119x+7432249826y^2+xy+y=x^3-7200119x+7432249826 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 1624.6.0.?, 2460.48.0.?, \ldots
249690.p3 249690.p 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/6Z\Z/6\Z 11 [1,0,1,371199,158084242][1, 0, 1, -371199, 158084242] y2+xy+y=x3371199x+158084242y^2+xy+y=x^3-371199x+158084242 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 1230.48.0.?, 1624.6.0.?, \ldots
249690.p4 249690.p 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,0,1,3148386,3056273264][1, 0, 1, 3148386, -3056273264] y2+xy+y=x3+3148386x3056273264y^2+xy+y=x^3+3148386x-3056273264 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 1230.48.0.?, 1624.6.0.?, \ldots
249690.q1 249690.q 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 11 Z/2Z\Z/2\Z 1.3490754021.349075402 [1,0,1,2654,47306][1, 0, 1, -2654, 47306] y2+xy+y=x32654x+47306y^2+xy+y=x^3-2654x+47306 2.3.0.a.1, 348.6.0.?, 2296.6.0.?, 199752.12.0.?
249690.q2 249690.q 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 11 Z/2Z\Z/2\Z 0.6745377010.674537701 [1,0,1,216,3682][1, 0, 1, 216, 3682] y2+xy+y=x3+216x+3682y^2+xy+y=x^3+216x+3682 2.3.0.a.1, 174.6.0.?, 2296.6.0.?, 199752.12.0.?
249690.r1 249690.r 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 11 Z/2Z\Z/2\Z 8.1540586918.154058691 [1,0,1,110974564,449978959738][1, 0, 1, -110974564, -449978959738] y2+xy+y=x3110974564x449978959738y^2+xy+y=x^3-110974564x-449978959738 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 116.12.0.?, 696.24.0.?, \ldots
249690.r2 249690.r 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 11 Z/2Z\Z/2\Z 8.1540586918.154058691 [1,0,1,8331884,4000466554][1, 0, 1, -8331884, -4000466554] y2+xy+y=x38331884x4000466554y^2+xy+y=x^3-8331884x-4000466554 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 232.12.0.?, 696.24.0.?, \ldots
249690.r3 249690.r 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 4.0770293454.077029345 [1,0,1,6937064,7028899738][1, 0, 1, -6937064, -7028899738] y2+xy+y=x36937064x7028899738y^2+xy+y=x^3-6937064x-7028899738 2.6.0.a.1, 12.12.0-2.a.1.1, 116.12.0.?, 348.24.0.?, 1148.12.0.?, \ldots
249690.r4 249690.r 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 11 Z/2Z\Z/2\Z 2.0385146722.038514672 [1,0,1,347544,154712474][1, 0, 1, -347544, -154712474] y2+xy+y=x3347544x154712474y^2+xy+y=x^3-347544x-154712474 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 116.12.0.?, 174.6.0.?, \ldots
249690.s1 249690.s 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 22 trivial\mathsf{trivial} 0.3574216150.357421615 [1,0,1,13633,219532][1, 0, 1, -13633, -219532] y2+xy+y=x313633x219532y^2+xy+y=x^3-13633x-219532 166460.2.0.?
249690.t1 249690.t 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 11 trivial\mathsf{trivial} 1.6402750131.640275013 [1,0,1,3,43006][1, 0, 1, -3, 43006] y2+xy+y=x33x+43006y^2+xy+y=x^3-3x+43006 199752.2.0.?
249690.u1 249690.u 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 11 trivial\mathsf{trivial} 7.8085574747.808557474 [1,0,1,16046213,24119355278][1, 0, 1, -16046213, 24119355278] y2+xy+y=x316046213x+24119355278y^2+xy+y=x^3-16046213x+24119355278 998760.2.0.?
249690.v1 249690.v 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 trivial\mathsf{trivial} 11 [1,0,1,10809898,13725606244][1, 0, 1, -10809898, -13725606244] y2+xy+y=x310809898x13725606244y^2+xy+y=x^3-10809898x-13725606244 3.8.0-3.a.1.1, 332920.2.0.?, 998760.16.0.?
249690.v2 249690.v 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/3Z\Z/3\Z 11 [1,0,1,299477,98649994][1, 0, 1, 299477, -98649994] y2+xy+y=x3+299477x98649994y^2+xy+y=x^3+299477x-98649994 3.8.0-3.a.1.2, 332920.2.0.?, 998760.16.0.?
249690.w1 249690.w 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,0,1,1523883768,22896979803194][1, 0, 1, -1523883768, -22896979803194] y2+xy+y=x31523883768x22896979803194y^2+xy+y=x^3-1523883768x-22896979803194 2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.ba.1.12, 1722.6.0.?, 3444.24.0.?, \ldots
249690.w2 249690.w 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,95588088,355046063162][1, 0, 1, -95588088, -355046063162] y2+xy+y=x395588088x355046063162y^2+xy+y=x^3-95588088x-355046063162 2.6.0.a.1, 4.12.0-2.a.1.1, 20.24.0-20.a.1.1, 3444.24.0.?, 17220.48.0.?
249690.w3 249690.w 23572941 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,0,1,11702008,6804931526][1, 0, 1, -11702008, 6804931526] y2+xy+y=x311702008x+6804931526y^2+xy+y=x^3-11702008x+6804931526 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 20.12.0-4.c.1.2, 40.24.0-40.ba.1.10, \ldots
Next   displayed columns for results