Learn more

Refine search


Results (1-50 of 139 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
249690.a1 249690.a \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1260378, -545151852]$ \(y^2+xy=x^3+x^2-1260378x-545151852\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 820.12.0.?, 1624.24.0.?, $\ldots$
249690.a2 249690.a \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -209498, 25704852]$ \(y^2+xy=x^3+x^2-209498x+25704852\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 812.12.0.?, 1624.24.0.?, $\ldots$
249690.a3 249690.a \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -79578, -8360172]$ \(y^2+xy=x^3+x^2-79578x-8360172\) 2.6.0.a.1, 8.12.0-2.a.1.1, 812.12.0.?, 820.12.0.?, 1624.24.0.?, $\ldots$
249690.a4 249690.a \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 2342, -479468]$ \(y^2+xy=x^3+x^2+2342x-479468\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 812.12.0.?, 820.12.0.?, $\ldots$
249690.b1 249690.b \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -122503, 15753973]$ \(y^2+xy=x^3+x^2-122503x+15753973\) 998760.2.0.?
249690.c1 249690.c \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 21670317, 4147190037]$ \(y^2+xy=x^3+x^2+21670317x+4147190037\) 199752.2.0.?
249690.d1 249690.d \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -863723413, 9769990800493]$ \(y^2+xy=x^3+x^2-863723413x+9769990800493\) 166460.2.0.?
249690.e1 249690.e \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -158949723, 771259043133]$ \(y^2+xy=x^3+x^2-158949723x+771259043133\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 280.12.0.?, 328.12.0.?, $\ldots$
249690.e2 249690.e \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -9991803, 11901358557]$ \(y^2+xy=x^3+x^2-9991803x+11901358557\) 2.6.0.a.1, 12.12.0-2.a.1.1, 140.12.0.?, 328.12.0.?, 420.24.0.?, $\ldots$
249690.e3 249690.e \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1385083, -356332067]$ \(y^2+xy=x^3+x^2-1385083x-356332067\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 140.12.0.?, 210.6.0.?, $\ldots$
249690.e4 249690.e \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 1258597, 37208008317]$ \(y^2+xy=x^3+x^2+1258597x+37208008317\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 140.12.0.?, 328.12.0.?, $\ldots$
249690.f1 249690.f \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -583963, -119850257]$ \(y^2+xy=x^3+x^2-583963x-119850257\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 24.24.0-24.bb.1.16, 812.12.0.?, $\ldots$
249690.f2 249690.f \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -533213, -150066807]$ \(y^2+xy=x^3+x^2-533213x-150066807\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.a.1.3, 812.12.0.?, $\ldots$
249690.f3 249690.f \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -533193, -150078603]$ \(y^2+xy=x^3+x^2-533193x-150078603\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.2, 24.24.0-24.bb.1.2, $\ldots$
249690.f4 249690.f \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -482783, -179528013]$ \(y^2+xy=x^3+x^2-482783x-179528013\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 12.12.0-4.c.1.1, 24.24.0-24.v.1.4, $\ldots$
249690.g1 249690.g \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $2$ $\Z/2\Z$ $7.038267882$ $[1, 1, 0, -413, -2307]$ \(y^2+xy=x^3+x^2-413x-2307\) 2.3.0.a.1, 20.6.0.b.1, 49938.6.0.?, 499380.12.0.?
249690.g2 249690.g \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $2$ $\Z/2\Z$ $1.759566970$ $[1, 1, 0, 1187, -14147]$ \(y^2+xy=x^3+x^2+1187x-14147\) 2.3.0.a.1, 20.6.0.a.1, 99876.6.0.?, 499380.12.0.?
249690.h1 249690.h \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $1$ $\mathsf{trivial}$ $0.632914585$ $[1, 1, 0, -221797, 36890509]$ \(y^2+xy=x^3+x^2-221797x+36890509\) 998760.2.0.?
249690.i1 249690.i \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $2$ $\mathsf{trivial}$ $0.446298006$ $[1, 1, 0, 55073, -3461951]$ \(y^2+xy=x^3+x^2+55073x-3461951\) 16646.2.0.?
249690.j1 249690.j \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -7, -5579]$ \(y^2+xy=x^3+x^2-7x-5579\) 499380.2.0.?
249690.k1 249690.k \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $2$ $\Z/2\Z$ $5.987699697$ $[1, 1, 0, -85472, -7887354]$ \(y^2+xy=x^3+x^2-85472x-7887354\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.1, 168.12.0.?, 840.24.0.?, $\ldots$
249690.k2 249690.k \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $1.496924924$ $[1, 1, 0, -26022, 1493856]$ \(y^2+xy=x^3+x^2-26022x+1493856\) 2.6.0.a.1, 40.12.0-2.a.1.1, 84.12.0.?, 840.24.0.?, 4756.12.0.?, $\ldots$
249690.k3 249690.k \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $2$ $\Z/2\Z$ $1.496924924$ $[1, 1, 0, -25522, 1558756]$ \(y^2+xy=x^3+x^2-25522x+1558756\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.4, 84.12.0.?, 840.24.0.?, $\ldots$
249690.k4 249690.k \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $2$ $\Z/2\Z$ $5.987699697$ $[1, 1, 0, 25428, 6731466]$ \(y^2+xy=x^3+x^2+25428x+6731466\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.2, 84.12.0.?, 840.24.0.?, $\ldots$
249690.l1 249690.l \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $1$ $\Z/2\Z$ $34.48970771$ $[1, 0, 1, -190169334995329, 1009389629523115878452]$ \(y^2+xy+y=x^3-190169334995329x+1009389629523115878452\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 812.12.0.?, 1624.24.0.?, $\ldots$
249690.l2 249690.l \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $1$ $\Z/2\Z$ $34.48970771$ $[1, 0, 1, -11923841870209, 15665066209482655796]$ \(y^2+xy+y=x^3-11923841870209x+15665066209482655796\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 820.12.0.?, 1624.24.0.?, $\ldots$
249690.l3 249690.l \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $17.24485385$ $[1, 0, 1, -11885583950209, 15771710788912543796]$ \(y^2+xy+y=x^3-11885583950209x+15771710788912543796\) 2.6.0.a.1, 8.12.0-2.a.1.1, 812.12.0.?, 820.12.0.?, 1624.24.0.?, $\ldots$
249690.l4 249690.l \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $1$ $\Z/2\Z$ $34.48970771$ $[1, 0, 1, -740458389889, 248097826814556212]$ \(y^2+xy+y=x^3-740458389889x+248097826814556212\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 812.12.0.?, 820.12.0.?, $\ldots$
249690.m1 249690.m \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $2$ $\mathsf{trivial}$ $6.750132838$ $[1, 0, 1, -9236384, 10802526446]$ \(y^2+xy+y=x^3-9236384x+10802526446\) 166460.2.0.?
249690.n1 249690.n \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $1$ $\mathsf{trivial}$ $3.702664678$ $[1, 0, 1, -29849, -1912228]$ \(y^2+xy+y=x^3-29849x-1912228\) 998760.2.0.?
249690.o1 249690.o \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -97546811559, 11726473602941482]$ \(y^2+xy+y=x^3-97546811559x+11726473602941482\) 3.8.0-3.a.1.2, 199752.16.0.?
249690.o2 249690.o \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -97538669574, 11728529023821016]$ \(y^2+xy+y=x^3-97538669574x+11728529023821016\) 3.8.0-3.a.1.1, 199752.16.0.?
249690.p1 249690.p \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -22315934, -31759654768]$ \(y^2+xy+y=x^3-22315934x-31759654768\) 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 1624.6.0.?, 2460.48.0.?, $\ldots$
249690.p2 249690.p \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -7200119, 7432249826]$ \(y^2+xy+y=x^3-7200119x+7432249826\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 1624.6.0.?, 2460.48.0.?, $\ldots$
249690.p3 249690.p \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -371199, 158084242]$ \(y^2+xy+y=x^3-371199x+158084242\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 1230.48.0.?, 1624.6.0.?, $\ldots$
249690.p4 249690.p \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 3148386, -3056273264]$ \(y^2+xy+y=x^3+3148386x-3056273264\) 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 1230.48.0.?, 1624.6.0.?, $\ldots$
249690.q1 249690.q \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $1$ $\Z/2\Z$ $1.349075402$ $[1, 0, 1, -2654, 47306]$ \(y^2+xy+y=x^3-2654x+47306\) 2.3.0.a.1, 348.6.0.?, 2296.6.0.?, 199752.12.0.?
249690.q2 249690.q \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $1$ $\Z/2\Z$ $0.674537701$ $[1, 0, 1, 216, 3682]$ \(y^2+xy+y=x^3+216x+3682\) 2.3.0.a.1, 174.6.0.?, 2296.6.0.?, 199752.12.0.?
249690.r1 249690.r \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $1$ $\Z/2\Z$ $8.154058691$ $[1, 0, 1, -110974564, -449978959738]$ \(y^2+xy+y=x^3-110974564x-449978959738\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 116.12.0.?, 696.24.0.?, $\ldots$
249690.r2 249690.r \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $1$ $\Z/2\Z$ $8.154058691$ $[1, 0, 1, -8331884, -4000466554]$ \(y^2+xy+y=x^3-8331884x-4000466554\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 232.12.0.?, 696.24.0.?, $\ldots$
249690.r3 249690.r \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.077029345$ $[1, 0, 1, -6937064, -7028899738]$ \(y^2+xy+y=x^3-6937064x-7028899738\) 2.6.0.a.1, 12.12.0-2.a.1.1, 116.12.0.?, 348.24.0.?, 1148.12.0.?, $\ldots$
249690.r4 249690.r \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $1$ $\Z/2\Z$ $2.038514672$ $[1, 0, 1, -347544, -154712474]$ \(y^2+xy+y=x^3-347544x-154712474\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 116.12.0.?, 174.6.0.?, $\ldots$
249690.s1 249690.s \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $2$ $\mathsf{trivial}$ $0.357421615$ $[1, 0, 1, -13633, -219532]$ \(y^2+xy+y=x^3-13633x-219532\) 166460.2.0.?
249690.t1 249690.t \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $1$ $\mathsf{trivial}$ $1.640275013$ $[1, 0, 1, -3, 43006]$ \(y^2+xy+y=x^3-3x+43006\) 199752.2.0.?
249690.u1 249690.u \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $1$ $\mathsf{trivial}$ $7.808557474$ $[1, 0, 1, -16046213, 24119355278]$ \(y^2+xy+y=x^3-16046213x+24119355278\) 998760.2.0.?
249690.v1 249690.v \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -10809898, -13725606244]$ \(y^2+xy+y=x^3-10809898x-13725606244\) 3.8.0-3.a.1.1, 332920.2.0.?, 998760.16.0.?
249690.v2 249690.v \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, 299477, -98649994]$ \(y^2+xy+y=x^3+299477x-98649994\) 3.8.0-3.a.1.2, 332920.2.0.?, 998760.16.0.?
249690.w1 249690.w \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1523883768, -22896979803194]$ \(y^2+xy+y=x^3-1523883768x-22896979803194\) 2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.ba.1.12, 1722.6.0.?, 3444.24.0.?, $\ldots$
249690.w2 249690.w \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -95588088, -355046063162]$ \(y^2+xy+y=x^3-95588088x-355046063162\) 2.6.0.a.1, 4.12.0-2.a.1.1, 20.24.0-20.a.1.1, 3444.24.0.?, 17220.48.0.?
249690.w3 249690.w \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -11702008, 6804931526]$ \(y^2+xy+y=x^3-11702008x+6804931526\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 20.12.0-4.c.1.2, 40.24.0-40.ba.1.10, $\ldots$
Next   displayed columns for results