Properties

Label 248430m
Number of curves $1$
Conductor $248430$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 248430m1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 248430m do not have complex multiplication.

Modular form 248430.2.a.m

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{8} + q^{9} + q^{10} - 2 q^{11} - q^{12} + q^{15} + q^{16} + 8 q^{17} - q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 248430m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
248430.m1 248430m1 \([1, 1, 0, -15733, -766163]\) \(-52013812295809/307200\) \(-2543923200\) \([]\) \(449280\) \(0.99392\) \(\Gamma_0(N)\)-optimal