Properties

Label 248430.in
Number of curves $4$
Conductor $248430$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("in1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 248430.in have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 248430.in do not have complex multiplication.

Modular form 248430.2.a.in

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{8} + q^{9} - q^{10} + q^{12} - q^{15} + q^{16} + 6 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 248430.in

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
248430.in1 248430in3 \([1, 0, 0, -4004036, 3082981446]\) \(12501706118329/2570490\) \(1459702233678870090\) \([2]\) \(8257536\) \(2.4825\)  
248430.in2 248430in2 \([1, 0, 0, -277586, 36981216]\) \(4165509529/1368900\) \(777356219118924900\) \([2, 2]\) \(4128768\) \(2.1359\)  
248430.in3 248430in1 \([1, 0, 0, -111966, -13996620]\) \(273359449/9360\) \(5315256199103760\) \([2]\) \(2064384\) \(1.7893\) \(\Gamma_0(N)\)-optimal
248430.in4 248430in4 \([1, 0, 0, 798944, 254224970]\) \(99317171591/106616250\) \(-60544090142916266250\) \([2]\) \(8257536\) \(2.4825\)