Show commands: SageMath
Rank
The elliptic curves in class 248004.e have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
Each elliptic curve in class 248004.e has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).Modular form 248004.2.a.e
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 248004.e
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
248004.e1 | 248004e4 | \([0, 0, 0, -930015, 339641478]\) | \(54000\) | \(1647402846469638912\) | \([2]\) | \(3471552\) | \(2.2899\) | \(-12\) | |
248004.e2 | 248004e2 | \([0, 0, 0, -103335, -12579314]\) | \(54000\) | \(2259811860726528\) | \([2]\) | \(1157184\) | \(1.7406\) | \(-12\) | |
248004.e3 | 248004e1 | \([0, 0, 0, 0, -571787]\) | \(0\) | \(-141238241295408\) | \([2]\) | \(578592\) | \(1.3940\) | \(\Gamma_0(N)\)-optimal | \(-3\) |
248004.e4 | 248004e3 | \([0, 0, 0, 0, 15438249]\) | \(0\) | \(-102962677904352432\) | \([2]\) | \(1735776\) | \(1.9433\) | \(-3\) |