Properties

Label 246e
Number of curves $4$
Conductor $246$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 246e have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(41\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 246e do not have complex multiplication.

Modular form 246.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - 2 q^{5} + q^{6} + 4 q^{7} + q^{8} + q^{9} - 2 q^{10} - 4 q^{11} + q^{12} + 2 q^{13} + 4 q^{14} - 2 q^{15} + q^{16} + 2 q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 246e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
246.f3 246e1 \([1, 0, 0, -9, 9]\) \(81182737/5904\) \(5904\) \([4]\) \(24\) \(-0.53001\) \(\Gamma_0(N)\)-optimal
246.f2 246e2 \([1, 0, 0, -29, -51]\) \(2703045457/544644\) \(544644\) \([2, 2]\) \(48\) \(-0.18343\)  
246.f1 246e3 \([1, 0, 0, -439, -3577]\) \(9357915116017/538002\) \(538002\) \([2]\) \(96\) \(0.16314\)  
246.f4 246e4 \([1, 0, 0, 61, -285]\) \(25076571983/50863698\) \(-50863698\) \([2]\) \(96\) \(0.16314\)