Show commands: SageMath
Rank
The elliptic curves in class 246e have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 246e do not have complex multiplication.Modular form 246.2.a.e
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 246e
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
246.f3 | 246e1 | \([1, 0, 0, -9, 9]\) | \(81182737/5904\) | \(5904\) | \([4]\) | \(24\) | \(-0.53001\) | \(\Gamma_0(N)\)-optimal |
246.f2 | 246e2 | \([1, 0, 0, -29, -51]\) | \(2703045457/544644\) | \(544644\) | \([2, 2]\) | \(48\) | \(-0.18343\) | |
246.f1 | 246e3 | \([1, 0, 0, -439, -3577]\) | \(9357915116017/538002\) | \(538002\) | \([2]\) | \(96\) | \(0.16314\) | |
246.f4 | 246e4 | \([1, 0, 0, 61, -285]\) | \(25076571983/50863698\) | \(-50863698\) | \([2]\) | \(96\) | \(0.16314\) |