Properties

Label 246840.be
Number of curves $4$
Conductor $246840$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("be1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 246840.be have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(11\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 246840.be do not have complex multiplication.

Modular form 246840.2.a.be

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} + 2 q^{13} - q^{15} - q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 246840.be

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
246840.be1 246840be3 \([0, -1, 0, -484040, 38059452]\) \(6913728144004/3658971285\) \(6637661008512906240\) \([2]\) \(4423680\) \(2.3031\)  
246840.be2 246840be2 \([0, -1, 0, -278340, -55986588]\) \(5258429611216/47403225\) \(21498292399161600\) \([2, 2]\) \(2211840\) \(1.9565\)  
246840.be3 246840be1 \([0, -1, 0, -277735, -56244560]\) \(83587439220736/6885\) \(195155159760\) \([2]\) \(1105920\) \(1.6100\) \(\Gamma_0(N)\)-optimal
246840.be4 246840be4 \([0, -1, 0, -82320, -133532100]\) \(-34008619684/4228250625\) \(-7670378399207040000\) \([2]\) \(4423680\) \(2.3031\)