Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+32541x-3889438\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+32541xz^2-3889438z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+32541x-3889438\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(2471/25, 67606/125)$ | $8.0343497823245598031678111908$ | $\infty$ |
| $(94, 0)$ | $0$ | $2$ |
Integral points
\( \left(94, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 2448 \) | = | $2^{4} \cdot 3^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $-8740503770775552$ | = | $-1 \cdot 2^{14} \cdot 3^{22} \cdot 17 $ |
|
| j-invariant: | $j$ | = | \( \frac{1276229915423}{2927177028} \) | = | $2^{-2} \cdot 3^{-16} \cdot 17^{-1} \cdot 10847^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7429580202554997546440657359$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.50050469536149959952921099598$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0301007930420596$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.622266590324776$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $8.0343497823245598031678111908$ |
|
| Real period: | $\Omega$ | ≈ | $0.21357311248152240761406359795$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.4318421795525965639822134408 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.431842180 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.213573 \cdot 8.034350 \cdot 8}{2^2} \\ & \approx 3.431842180\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 12288 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{6}^{*}$ | additive | -1 | 4 | 14 | 2 |
| $3$ | $4$ | $I_{16}^{*}$ | additive | -1 | 2 | 22 | 16 |
| $17$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.48.0.132 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 816 = 2^{4} \cdot 3 \cdot 17 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 5 & 4 \\ 812 & 813 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 271 & 0 \\ 0 & 815 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 718 & 803 \end{array}\right),\left(\begin{array}{rr} 13 & 288 \\ 60 & 121 \end{array}\right),\left(\begin{array}{rr} 638 & 333 \\ 417 & 386 \end{array}\right),\left(\begin{array}{rr} 568 & 273 \\ 543 & 10 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 801 & 16 \\ 800 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[816])$ is a degree-$481296384$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/816\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 153 = 3^{2} \cdot 17 \) |
| $3$ | additive | $8$ | \( 272 = 2^{4} \cdot 17 \) |
| $17$ | nonsplit multiplicative | $18$ | \( 144 = 2^{4} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 2448n
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 102b4, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-17}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{3}) \) | \(\Z/4\Z\) | 2.2.12.1-1734.1-e2 |
| $2$ | \(\Q(\sqrt{-51}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{3}, \sqrt{-17})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{3}, \sqrt{34})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-2}, \sqrt{3})\) | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.500516630784.16 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.8008266092544.28 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.443364212736.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.392737849344.7 | \(\Z/16\Z\) | not in database |
| $8$ | 8.2.15150586457088.13 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | ord | ss | ord | ord | nonsplit | ord | ss | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | - | - | 1 | 1,1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | - | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.