Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
2448.a1 |
2448l2 |
2448.a |
2448l |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.379978712$ |
$1$ |
|
$4$ |
$1728$ |
$0.675154$ |
$-1517101056/17$ |
$[0, 0, 0, -4104, 101196]$ |
\(y^2=x^3-4104x+101196\) |
2448.a2 |
2448l1 |
2448.a |
2448l |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.126659570$ |
$1$ |
|
$6$ |
$576$ |
$0.125848$ |
$-221184/4913$ |
$[0, 0, 0, -24, 284]$ |
\(y^2=x^3-24x+284\) |
2448.b1 |
2448h1 |
2448.b |
2448h |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{9} \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.322834554$ |
$1$ |
|
$4$ |
$3840$ |
$1.155319$ |
$57530252288/38336139$ |
$[0, 0, 0, 4596, -46676]$ |
\(y^2=x^3+4596x-46676\) |
2448.c1 |
2448s2 |
2448.c |
2448s |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3^{7} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.983230$ |
$-23100424192/14739$ |
$[0, 0, 0, -8544, -304144]$ |
\(y^2=x^3-8544x-304144\) |
2448.c2 |
2448s1 |
2448.c |
2448s |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3^{9} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$1152$ |
$0.433924$ |
$32768/459$ |
$[0, 0, 0, 96, -1744]$ |
\(y^2=x^3+96x-1744\) |
2448.d1 |
2448d3 |
2448.d |
2448d |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{11} \cdot 3^{14} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$1$ |
$1$ |
|
$1$ |
$4096$ |
$1.001610$ |
$22994537186/111537$ |
$[0, 0, 0, -6771, -213550]$ |
\(y^2=x^3-6771x-213550\) |
2448.d2 |
2448d2 |
2448.d |
2448d |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{10} \cdot 3^{10} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.4 |
2Cs |
$1$ |
$1$ |
|
$3$ |
$2048$ |
$0.655037$ |
$40873252/23409$ |
$[0, 0, 0, -651, 650]$ |
\(y^2=x^3-651x+650\) |
2448.d3 |
2448d1 |
2448.d |
2448d |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{8} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$1$ |
$1$ |
|
$1$ |
$1024$ |
$0.308464$ |
$61918288/153$ |
$[0, 0, 0, -471, 3926]$ |
\(y^2=x^3-471x+3926\) |
2448.d4 |
2448d4 |
2448.d |
2448d |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{11} \cdot 3^{8} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.16 |
2B |
$1$ |
$1$ |
|
$1$ |
$4096$ |
$1.001610$ |
$1285471294/751689$ |
$[0, 0, 0, 2589, 5186]$ |
\(y^2=x^3+2589x+5186\) |
2448.e1 |
2448m1 |
2448.e |
2448m |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.876888052$ |
$1$ |
|
$4$ |
$384$ |
$0.037764$ |
$-65536/51$ |
$[0, 0, 0, -48, -196]$ |
\(y^2=x^3-48x-196\) |
2448.f1 |
2448a1 |
2448.f |
2448a |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.813040150$ |
$1$ |
|
$2$ |
$128$ |
$-0.337991$ |
$27648/17$ |
$[0, 0, 0, 12, -4]$ |
\(y^2=x^3+12x-4\) |
2448.g1 |
2448i1 |
2448.g |
2448i |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3^{3} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$320$ |
$-0.067080$ |
$-110592/17$ |
$[0, 0, 0, -48, -144]$ |
\(y^2=x^3-48x-144\) |
2448.h1 |
2448g1 |
2448.h |
2448g |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{10} \cdot 3^{8} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$1.472924139$ |
$1$ |
|
$7$ |
$512$ |
$0.355572$ |
$12194500/153$ |
$[0, 0, 0, -435, -3454]$ |
\(y^2=x^3-435x-3454\) |
2448.h2 |
2448g2 |
2448.h |
2448g |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{11} \cdot 3^{10} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$0.736462069$ |
$1$ |
|
$9$ |
$1024$ |
$0.702146$ |
$-31250/23409$ |
$[0, 0, 0, -75, -8998]$ |
\(y^2=x^3-75x-8998\) |
2448.i1 |
2448p3 |
2448.i |
2448p |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{30} \cdot 3^{8} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$13824$ |
$1.883879$ |
$46753267515625/11591221248$ |
$[0, 0, 0, -108075, -10338982]$ |
\(y^2=x^3-108075x-10338982\) |
2448.i2 |
2448p1 |
2448.i |
2448p |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{18} \cdot 3^{12} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$4608$ |
$1.334574$ |
$1845026709625/793152$ |
$[0, 0, 0, -36795, 2715626]$ |
\(y^2=x^3-36795x+2715626\) |
2448.i3 |
2448p2 |
2448.i |
2448p |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{15} \cdot 3^{18} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$9216$ |
$1.681147$ |
$-1107111813625/1228691592$ |
$[0, 0, 0, -31035, 3594602]$ |
\(y^2=x^3-31035x+3594602\) |
2448.i4 |
2448p4 |
2448.i |
2448p |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{21} \cdot 3^{10} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$27648$ |
$2.230453$ |
$655215969476375/1001033261568$ |
$[0, 0, 0, 260565, -65561254]$ |
\(y^2=x^3+260565x-65561254\) |
2448.j1 |
2448f2 |
2448.j |
2448f |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{11} \cdot 3^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$0.480566655$ |
$1$ |
|
$9$ |
$768$ |
$0.417461$ |
$6097250/289$ |
$[0, 0, 0, -435, 3346]$ |
\(y^2=x^3-435x+3346\) |
2448.j2 |
2448f1 |
2448.j |
2448f |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{10} \cdot 3^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$0.961133310$ |
$1$ |
|
$7$ |
$384$ |
$0.070888$ |
$62500/17$ |
$[0, 0, 0, -75, -182]$ |
\(y^2=x^3-75x-182\) |
2448.k1 |
2448q4 |
2448.k |
2448q |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{13} \cdot 3^{6} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$6912$ |
$1.421940$ |
$159661140625/48275138$ |
$[0, 0, 0, -16275, -552238]$ |
\(y^2=x^3-16275x-552238\) |
2448.k2 |
2448q3 |
2448.k |
2448q |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{14} \cdot 3^{6} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$3456$ |
$1.075367$ |
$120920208625/19652$ |
$[0, 0, 0, -14835, -695374]$ |
\(y^2=x^3-14835x-695374\) |
2448.k3 |
2448q2 |
2448.k |
2448q |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{15} \cdot 3^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$2304$ |
$0.872635$ |
$8805624625/2312$ |
$[0, 0, 0, -6195, 187634]$ |
\(y^2=x^3-6195x+187634\) |
2448.k4 |
2448q1 |
2448.k |
2448q |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{18} \cdot 3^{6} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$1152$ |
$0.526061$ |
$3048625/1088$ |
$[0, 0, 0, -435, 2162]$ |
\(y^2=x^3-435x+2162\) |
2448.l1 |
2448r1 |
2448.l |
2448r |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{17} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$4224$ |
$1.151207$ |
$-1841198792704/3011499$ |
$[0, 0, 0, -14592, -679412]$ |
\(y^2=x^3-14592x-679412\) |
2448.m1 |
2448k1 |
2448.m |
2448k |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.160245252$ |
$1$ |
|
$2$ |
$960$ |
$0.482225$ |
$-110592/17$ |
$[0, 0, 0, -432, 3888]$ |
\(y^2=x^3-432x+3888\) |
2448.n1 |
2448b1 |
2448.n |
2448b |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{9} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$384$ |
$0.211315$ |
$27648/17$ |
$[0, 0, 0, 108, 108]$ |
\(y^2=x^3+108x+108\) |
2448.o1 |
2448o3 |
2448.o |
2448o |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{12} \cdot 3^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.12 |
2B |
$3.624239889$ |
$1$ |
|
$3$ |
$2048$ |
$0.865817$ |
$82483294977/17$ |
$[0, 0, 0, -13059, -574398]$ |
\(y^2=x^3-13059x-574398\) |
2448.o2 |
2448o2 |
2448.o |
2448o |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{12} \cdot 3^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.20 |
2Cs |
$1.812119944$ |
$1$ |
|
$9$ |
$1024$ |
$0.519243$ |
$20346417/289$ |
$[0, 0, 0, -819, -8910]$ |
\(y^2=x^3-819x-8910\) |
2448.o3 |
2448o4 |
2448.o |
2448o |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3^{6} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.76 |
2B |
$3.624239889$ |
$1$ |
|
$3$ |
$2048$ |
$0.865817$ |
$-35937/83521$ |
$[0, 0, 0, -99, -24030]$ |
\(y^2=x^3-99x-24030\) |
2448.o4 |
2448o1 |
2448.o |
2448o |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{12} \cdot 3^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.12 |
2B |
$0.906059972$ |
$1$ |
|
$7$ |
$512$ |
$0.172670$ |
$35937/17$ |
$[0, 0, 0, -99, 162]$ |
\(y^2=x^3-99x+162\) |
2448.p1 |
2448n5 |
2448.p |
2448n |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{13} \cdot 3^{8} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.213 |
2B |
$16.06869956$ |
$1$ |
|
$1$ |
$24576$ |
$2.089531$ |
$2361739090258884097/5202$ |
$[0, 0, 0, -3995139, -3073590142]$ |
\(y^2=x^3-3995139x-3073590142\) |
2448.p2 |
2448n3 |
2448.p |
2448n |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{14} \cdot 3^{10} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.137 |
2Cs |
$8.034349782$ |
$1$ |
|
$3$ |
$12288$ |
$1.742958$ |
$576615941610337/27060804$ |
$[0, 0, 0, -249699, -48023710]$ |
\(y^2=x^3-249699x-48023710\) |
2448.p3 |
2448n6 |
2448.p |
2448n |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{13} \cdot 3^{8} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.224 |
2B |
$4.017174891$ |
$1$ |
|
$3$ |
$24576$ |
$2.089531$ |
$-491411892194497/125563633938$ |
$[0, 0, 0, -236739, -53231038]$ |
\(y^2=x^3-236739x-53231038\) |
2448.p4 |
2448n2 |
2448.p |
2448n |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{16} \cdot 3^{14} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.89 |
2Cs |
$4.017174891$ |
$1$ |
|
$7$ |
$6144$ |
$1.396385$ |
$163936758817/30338064$ |
$[0, 0, 0, -16419, -667870]$ |
\(y^2=x^3-16419x-667870\) |
2448.p5 |
2448n1 |
2448.p |
2448n |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{20} \cdot 3^{10} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.101 |
2B |
$2.008587445$ |
$1$ |
|
$7$ |
$3072$ |
$1.049810$ |
$4354703137/352512$ |
$[0, 0, 0, -4899, 122402]$ |
\(y^2=x^3-4899x+122402\) |
2448.p6 |
2448n4 |
2448.p |
2448n |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{14} \cdot 3^{22} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.132 |
2B |
$8.034349782$ |
$1$ |
|
$1$ |
$12288$ |
$1.742958$ |
$1276229915423/2927177028$ |
$[0, 0, 0, 32541, -3889438]$ |
\(y^2=x^3+32541x-3889438\) |
2448.q1 |
2448c1 |
2448.q |
2448c |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{6} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$1$ |
$1$ |
|
$1$ |
$384$ |
$-0.058898$ |
$35152/17$ |
$[0, 0, 0, -39, 38]$ |
\(y^2=x^3-39x+38\) |
2448.q2 |
2448c2 |
2448.q |
2448c |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{10} \cdot 3^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$1$ |
$1$ |
|
$1$ |
$768$ |
$0.287676$ |
$415292/289$ |
$[0, 0, 0, 141, 290]$ |
\(y^2=x^3+141x+290\) |
2448.r1 |
2448j1 |
2448.r |
2448j |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$576$ |
$0.125848$ |
$-1517101056/17$ |
$[0, 0, 0, -456, -3748]$ |
\(y^2=x^3-456x-3748\) |
2448.r2 |
2448j2 |
2448.r |
2448j |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{9} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$1728$ |
$0.675154$ |
$-221184/4913$ |
$[0, 0, 0, -216, -7668]$ |
\(y^2=x^3-216x-7668\) |
2448.s1 |
2448e1 |
2448.s |
2448e |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{11} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1280$ |
$0.395303$ |
$-2249728/4131$ |
$[0, 0, 0, -156, 1532]$ |
\(y^2=x^3-156x+1532\) |
2448.t1 |
2448t1 |
2448.t |
2448t |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( 2^{14} \cdot 3^{8} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$1$ |
$1$ |
|
$1$ |
$1536$ |
$0.478925$ |
$1771561/612$ |
$[0, 0, 0, -363, 1690]$ |
\(y^2=x^3-363x+1690\) |
2448.t2 |
2448t2 |
2448.t |
2448t |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{13} \cdot 3^{10} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$1$ |
$1$ |
|
$1$ |
$3072$ |
$0.825499$ |
$46268279/46818$ |
$[0, 0, 0, 1077, 11770]$ |
\(y^2=x^3+1077x+11770\) |