Show commands: SageMath
Rank
The elliptic curves in class 244800ne have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 244800ne do not have complex multiplication.Modular form 244800.2.a.ne
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 244800ne
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
244800.ne2 | 244800ne1 | \([0, 0, 0, -36770700, 85821194000]\) | \(1841373668746009/31443200\) | \(93888892108800000000\) | \([2]\) | \(17694720\) | \(2.9619\) | \(\Gamma_0(N)\)-optimal |
244800.ne3 | 244800ne2 | \([0, 0, 0, -35618700, 91449866000]\) | \(-1673672305534489/241375690000\) | \(-720743948328960000000000\) | \([2]\) | \(35389440\) | \(3.3085\) | |
244800.ne1 | 244800ne3 | \([0, 0, 0, -60026700, -35210374000]\) | \(8010684753304969/4456448000000\) | \(13306882424832000000000000\) | \([2]\) | \(53084160\) | \(3.5112\) | |
244800.ne4 | 244800ne4 | \([0, 0, 0, 234885300, -278807686000]\) | \(479958568556831351/289000000000000\) | \(-862949376000000000000000000\) | \([2]\) | \(106168320\) | \(3.8578\) |