Properties

Label 244800.qr
Number of curves $1$
Conductor $244800$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("qr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 244800.qr1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 244800.qr do not have complex multiplication.

Modular form 244800.2.a.qr

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{7} + 3 q^{11} - 4 q^{13} + q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 244800.qr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244800.qr1 244800qr1 \([0, 0, 0, -67500, -2430000]\) \(33750/17\) \(17132083200000000\) \([]\) \(1474560\) \(1.8076\) \(\Gamma_0(N)\)-optimal