Properties

Label 244608.g
Number of curves $1$
Conductor $244608$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 244608.g1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 244608.g do not have complex multiplication.

Modular form 244608.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{5} + q^{9} - 3 q^{11} - q^{13} + 3 q^{15} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 244608.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244608.g1 244608g1 \([0, -1, 0, 278, -1574]\) \(377475616/369603\) \(-2318150016\) \([]\) \(134400\) \(0.48402\) \(\Gamma_0(N)\)-optimal