Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-1760x+52788\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-1760xz^2+52788z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-142587x+38910186\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{4}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(28, 162)$ | $0$ | $4$ |
Integral points
\( \left(-53, 0\right) \), \((28,\pm 162)\)
Invariants
Conductor: | $N$ | = | \( 240 \) | = | $2^{4} \cdot 3 \cdot 5$ |
|
Discriminant: | $\Delta$ | = | $-881596846080$ | = | $-1 \cdot 2^{12} \cdot 3^{16} \cdot 5 $ |
|
j-invariant: | $j$ | = | \( -\frac{147281603041}{215233605} \) | = | $-1 \cdot 3^{-16} \cdot 5^{-1} \cdot 5281^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.98401678903704683139086774575$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.29086960847710152197363562429$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0594919023465201$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.43963811841348$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.79812111106589175507448453575$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{4}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.5962422221317835101489690715 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.596242222 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.798121 \cdot 1.000000 \cdot 32}{4^2} \\ & \approx 1.596242222\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 256 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{4}^{*}$ | additive | -1 | 4 | 12 | 0 |
$3$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
$5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.96.0.101 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 480 = 2^{5} \cdot 3 \cdot 5 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 449 & 32 \\ 448 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 318 & 395 \end{array}\right),\left(\begin{array}{rr} 161 & 32 \\ 176 & 33 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 421 & 32 \\ 436 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 214 & 3 \\ 365 & 268 \end{array}\right),\left(\begin{array}{rr} 420 & 449 \\ 241 & 156 \end{array}\right)$.
The torsion field $K:=\Q(E[480])$ is a degree-$11796480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/480\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 5 \) |
$3$ | split multiplicative | $4$ | \( 80 = 2^{4} \cdot 5 \) |
$5$ | split multiplicative | $6$ | \( 48 = 2^{4} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4, 8 and 16.
Its isogeny class 240d
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 15a6, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-5}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{10}) \) | \(\Z/8\Z\) | not in database |
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/8\Z\) | 2.0.8.1-3600.2-f1 |
$4$ | \(\Q(\sqrt{-2}, \sqrt{-5})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$4$ | 4.4.256000.1 | \(\Z/16\Z\) | not in database |
$4$ | 4.0.256000.2 | \(\Z/16\Z\) | not in database |
$8$ | 8.0.1024000000.6 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.64000000.3 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.419430400.3 | \(\Z/16\Z\) | not in database |
$8$ | 8.0.262144000000.2 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | 8.2.28343520000.1 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.16777216000000000000.3 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | 16.0.109951162777600000000.5 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/32\Z\) | not in database |
$16$ | deg 16 | \(\Z/32\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 |
---|---|---|---|
Reduction type | add | split | split |
$\lambda$-invariant(s) | - | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.