# Properties

 Label 240.2.a.d Level $240$ Weight $2$ Character orbit 240.a Self dual yes Analytic conductor $1.916$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$240 = 2^{4} \cdot 3 \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 240.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$1.91640964851$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 15) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{3} + q^{5} + q^{9} + O(q^{10})$$ $$q + q^{3} + q^{5} + q^{9} + 4q^{11} - 2q^{13} + q^{15} + 2q^{17} - 4q^{19} + q^{25} + q^{27} - 2q^{29} + 4q^{33} - 10q^{37} - 2q^{39} + 10q^{41} - 4q^{43} + q^{45} - 8q^{47} - 7q^{49} + 2q^{51} - 10q^{53} + 4q^{55} - 4q^{57} + 4q^{59} - 2q^{61} - 2q^{65} - 12q^{67} + 8q^{71} + 10q^{73} + q^{75} + q^{81} - 12q^{83} + 2q^{85} - 2q^{87} - 6q^{89} - 4q^{95} + 2q^{97} + 4q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 1.00000 0 1.00000 0 0 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 240.2.a.d 1
3.b odd 2 1 720.2.a.c 1
4.b odd 2 1 15.2.a.a 1
5.b even 2 1 1200.2.a.e 1
5.c odd 4 2 1200.2.f.h 2
8.b even 2 1 960.2.a.a 1
8.d odd 2 1 960.2.a.l 1
12.b even 2 1 45.2.a.a 1
15.d odd 2 1 3600.2.a.u 1
15.e even 4 2 3600.2.f.e 2
16.e even 4 2 3840.2.k.r 2
16.f odd 4 2 3840.2.k.m 2
20.d odd 2 1 75.2.a.b 1
20.e even 4 2 75.2.b.b 2
24.f even 2 1 2880.2.a.y 1
24.h odd 2 1 2880.2.a.bc 1
28.d even 2 1 735.2.a.c 1
28.f even 6 2 735.2.i.d 2
28.g odd 6 2 735.2.i.e 2
36.f odd 6 2 405.2.e.f 2
36.h even 6 2 405.2.e.c 2
40.e odd 2 1 4800.2.a.t 1
40.f even 2 1 4800.2.a.bz 1
40.i odd 4 2 4800.2.f.c 2
40.k even 4 2 4800.2.f.bf 2
44.c even 2 1 1815.2.a.d 1
52.b odd 2 1 2535.2.a.j 1
60.h even 2 1 225.2.a.b 1
60.l odd 4 2 225.2.b.b 2
68.d odd 2 1 4335.2.a.c 1
76.d even 2 1 5415.2.a.j 1
84.h odd 2 1 2205.2.a.i 1
92.b even 2 1 7935.2.a.d 1
132.d odd 2 1 5445.2.a.c 1
140.c even 2 1 3675.2.a.j 1
156.h even 2 1 7605.2.a.g 1
220.g even 2 1 9075.2.a.g 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.2.a.a 1 4.b odd 2 1
45.2.a.a 1 12.b even 2 1
75.2.a.b 1 20.d odd 2 1
75.2.b.b 2 20.e even 4 2
225.2.a.b 1 60.h even 2 1
225.2.b.b 2 60.l odd 4 2
240.2.a.d 1 1.a even 1 1 trivial
405.2.e.c 2 36.h even 6 2
405.2.e.f 2 36.f odd 6 2
720.2.a.c 1 3.b odd 2 1
735.2.a.c 1 28.d even 2 1
735.2.i.d 2 28.f even 6 2
735.2.i.e 2 28.g odd 6 2
960.2.a.a 1 8.b even 2 1
960.2.a.l 1 8.d odd 2 1
1200.2.a.e 1 5.b even 2 1
1200.2.f.h 2 5.c odd 4 2
1815.2.a.d 1 44.c even 2 1
2205.2.a.i 1 84.h odd 2 1
2535.2.a.j 1 52.b odd 2 1
2880.2.a.y 1 24.f even 2 1
2880.2.a.bc 1 24.h odd 2 1
3600.2.a.u 1 15.d odd 2 1
3600.2.f.e 2 15.e even 4 2
3675.2.a.j 1 140.c even 2 1
3840.2.k.m 2 16.f odd 4 2
3840.2.k.r 2 16.e even 4 2
4335.2.a.c 1 68.d odd 2 1
4800.2.a.t 1 40.e odd 2 1
4800.2.a.bz 1 40.f even 2 1
4800.2.f.c 2 40.i odd 4 2
4800.2.f.bf 2 40.k even 4 2
5415.2.a.j 1 76.d even 2 1
5445.2.a.c 1 132.d odd 2 1
7605.2.a.g 1 156.h even 2 1
7935.2.a.d 1 92.b even 2 1
9075.2.a.g 1 220.g even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(240))$$:

 $$T_{7}$$ $$T_{13} + 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$-1 + T$$
$5$ $$-1 + T$$
$7$ $$T$$
$11$ $$-4 + T$$
$13$ $$2 + T$$
$17$ $$-2 + T$$
$19$ $$4 + T$$
$23$ $$T$$
$29$ $$2 + T$$
$31$ $$T$$
$37$ $$10 + T$$
$41$ $$-10 + T$$
$43$ $$4 + T$$
$47$ $$8 + T$$
$53$ $$10 + T$$
$59$ $$-4 + T$$
$61$ $$2 + T$$
$67$ $$12 + T$$
$71$ $$-8 + T$$
$73$ $$-10 + T$$
$79$ $$T$$
$83$ $$12 + T$$
$89$ $$6 + T$$
$97$ $$-2 + T$$