Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-12008x-502488\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-12008xz^2-502488z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-972675x-369231750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(973/4, 26425/8)$ | $5.5010431854846100492535055797$ | $\infty$ |
| $(-63, 0)$ | $0$ | $2$ |
Integral points
\( \left(-63, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 2400 \) | = | $2^{5} \cdot 3 \cdot 5^{2}$ |
|
| Discriminant: | $\Delta$ | = | $360000000$ | = | $2^{9} \cdot 3^{2} \cdot 5^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{23937672968}{45} \) | = | $2^{3} \cdot 3^{-2} \cdot 5^{-1} \cdot 11^{3} \cdot 131^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.89703839715185174926803998429$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.42754094448515742009526377342$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0109039721020272$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.1127490800470925$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.5010431854846100492535055797$ |
|
| Real period: | $\Omega$ | ≈ | $0.45606728477825990005657151149$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.5088458290519156487042889135 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.508845829 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.456067 \cdot 5.501043 \cdot 4}{2^2} \\ & \approx 2.508845829\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3072 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_0^{*}$ | additive | 1 | 5 | 9 | 0 |
| $3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $5$ | $2$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.24.0.109 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 240 = 2^{4} \cdot 3 \cdot 5 \), index $192$, genus $3$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 173 & 50 \\ 56 & 187 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 188 & 189 \\ 143 & 146 \end{array}\right),\left(\begin{array}{rr} 15 & 166 \\ 194 & 195 \end{array}\right),\left(\begin{array}{rr} 161 & 16 \\ 88 & 129 \end{array}\right),\left(\begin{array}{rr} 225 & 16 \\ 224 & 17 \end{array}\right),\left(\begin{array}{rr} 82 & 237 \\ 99 & 220 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 8 & 65 \end{array}\right)$.
The torsion field $K:=\Q(E[240])$ is a degree-$2949120$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 25 = 5^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 800 = 2^{5} \cdot 5^{2} \) |
| $5$ | additive | $18$ | \( 96 = 2^{5} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 2400d
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 480f3, its twist by $-20$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{10}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-5}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-2}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-2}, \sqrt{-5})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.5308416000000.16 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.13271040000.28 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.262144000000.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.2.181398528000000.8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | add | ord | ss | ord | ord | ss | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 1 | - | 1 | 1,1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | - | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.