Learn more

Refine search


Results (1-50 of 72 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
2400.a1 2400.a \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -90033, -10368063]$ \(y^2=x^3-x^2-90033x-10368063\)
2400.a2 2400.a \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -12408, 300312]$ \(y^2=x^3-x^2-12408x+300312\)
2400.a3 2400.a \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -5658, -158688]$ \(y^2=x^3-x^2-5658x-158688\)
2400.a4 2400.a \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 592, -496188]$ \(y^2=x^3-x^2+592x-496188\)
2400.b1 2400.b \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $5.501043185$ $[0, -1, 0, -12008, -502488]$ \(y^2=x^3-x^2-12008x-502488\)
2400.b2 2400.b \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.375260796$ $[0, -1, 0, -2008, 25012]$ \(y^2=x^3-x^2-2008x+25012\)
2400.b3 2400.b \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.750521592$ $[0, -1, 0, -758, -7488]$ \(y^2=x^3-x^2-758x-7488\)
2400.b4 2400.b \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.375260796$ $[0, -1, 0, 367, -28863]$ \(y^2=x^3-x^2+367x-28863\)
2400.c1 2400.c \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.703050583$ $[0, -1, 0, -48, -108]$ \(y^2=x^3-x^2-48x-108\)
2400.c2 2400.c \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.406101167$ $[0, -1, 0, 2, -8]$ \(y^2=x^3-x^2+2x-8\)
2400.d1 2400.d \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1208, 15912]$ \(y^2=x^3-x^2-1208x+15912\)
2400.d2 2400.d \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 42, 912]$ \(y^2=x^3-x^2+42x+912\)
2400.e1 2400.e \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 1667, 42037]$ \(y^2=x^3-x^2+1667x+42037\)
2400.f1 2400.f \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.481366420$ $[0, -1, 0, -13, 37]$ \(y^2=x^3-x^2-13x+37\)
2400.g1 2400.g \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $2.508270896$ $[0, -1, 0, -333, -3963]$ \(y^2=x^3-x^2-333x-3963\)
2400.h1 2400.h \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.444935150$ $[0, -1, 0, 67, -363]$ \(y^2=x^3-x^2+67x-363\)
2400.i1 2400.i \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/4\Z$ $3.183533955$ $[0, -1, 0, -4008, 99012]$ \(y^2=x^3-x^2-4008x+99012\)
2400.i2 2400.i \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $3.183533955$ $[0, -1, 0, -1008, -10488]$ \(y^2=x^3-x^2-1008x-10488\)
2400.i3 2400.i \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.591766977$ $[0, -1, 0, -258, 1512]$ \(y^2=x^3-x^2-258x+1512\)
2400.i4 2400.i \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.795883488$ $[0, -1, 0, 367, 7137]$ \(y^2=x^3-x^2+367x+7137\)
2400.j1 2400.j \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, -2033, 35937]$ \(y^2=x^3-x^2-2033x+35937\)
2400.j2 2400.j \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1408, -19688]$ \(y^2=x^3-x^2-1408x-19688\)
2400.j3 2400.j \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -158, 312]$ \(y^2=x^3-x^2-158x+312\)
2400.j4 2400.j \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 592, 1812]$ \(y^2=x^3-x^2+592x+1812\)
2400.k1 2400.k \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -4333, -815963]$ \(y^2=x^3-x^2-4333x-815963\)
2400.l1 2400.l \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $3.154513962$ $[0, -1, 0, -733, -7403]$ \(y^2=x^3-x^2-733x-7403\)
2400.m1 2400.m \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -18333, 962037]$ \(y^2=x^3-x^2-18333x+962037\)
2400.n1 2400.n \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -173, 6597]$ \(y^2=x^3-x^2-173x+6597\)
2400.o1 2400.o \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.229189032$ $[0, -1, 0, -13458, 605412]$ \(y^2=x^3-x^2-13458x+605412\)
2400.o2 2400.o \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $2.458378065$ $[0, -1, 0, -12833, 663537]$ \(y^2=x^3-x^2-12833x+663537\)
2400.p1 2400.p \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -538, -4628]$ \(y^2=x^3-x^2-538x-4628\)
2400.p2 2400.p \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -513, -5103]$ \(y^2=x^3-x^2-513x-5103\)
2400.q1 2400.q \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -808, 9112]$ \(y^2=x^3-x^2-808x+9112\)
2400.q2 2400.q \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -433, -3263]$ \(y^2=x^3-x^2-433x-3263\)
2400.q3 2400.q \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -58, 112]$ \(y^2=x^3-x^2-58x+112\)
2400.q4 2400.q \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 192, 612]$ \(y^2=x^3-x^2+192x+612\)
2400.r1 2400.r \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -808, -9112]$ \(y^2=x^3+x^2-808x-9112\)
2400.r2 2400.r \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -433, 3263]$ \(y^2=x^3+x^2-433x+3263\)
2400.r3 2400.r \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -58, -112]$ \(y^2=x^3+x^2-58x-112\)
2400.r4 2400.r \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 192, -612]$ \(y^2=x^3+x^2+192x-612\)
2400.s1 2400.s \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -13458, -605412]$ \(y^2=x^3+x^2-13458x-605412\)
2400.s2 2400.s \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -12833, -663537]$ \(y^2=x^3+x^2-12833x-663537\)
2400.t1 2400.t \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.319425305$ $[0, 1, 0, -538, 4628]$ \(y^2=x^3+x^2-538x+4628\)
2400.t2 2400.t \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.159712652$ $[0, 1, 0, -513, 5103]$ \(y^2=x^3+x^2-513x+5103\)
2400.u1 2400.u \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.295749244$ $[0, 1, 0, -173, -6597]$ \(y^2=x^3+x^2-173x-6597\)
2400.v1 2400.v \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.164529988$ $[0, 1, 0, -733, 7403]$ \(y^2=x^3+x^2-733x+7403\)
2400.w1 2400.w \( 2^{5} \cdot 3 \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -18333, -962037]$ \(y^2=x^3+x^2-18333x-962037\)
2400.x1 2400.x \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.115826605$ $[0, 1, 0, -4333, 815963]$ \(y^2=x^3+x^2-4333x+815963\)
2400.y1 2400.y \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.267896143$ $[0, 1, 0, -2033, -35937]$ \(y^2=x^3+x^2-2033x-35937\)
2400.y2 2400.y \( 2^{5} \cdot 3 \cdot 5^{2} \) $1$ $\Z/4\Z$ $1.267896143$ $[0, 1, 0, -1408, 19688]$ \(y^2=x^3+x^2-1408x+19688\)
Next   Download to