Properties

Label 237120o
Number of curves $1$
Conductor $237120$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 237120o1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(13\)\(1 - T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(23\) \( 1 - 5 T + 23 T^{2}\) 1.23.af
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 237120o do not have complex multiplication.

Modular form 237120.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 2 q^{7} + q^{9} + 2 q^{11} + q^{13} + q^{15} - 7 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 237120o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
237120.o1 237120o1 \([0, -1, 0, -301558641, 2015707242105]\) \(-2961686524287311350789156096/139506818115234375\) \(-142854981750000000000\) \([]\) \(39075840\) \(3.3456\) \(\Gamma_0(N)\)-optimal