Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3+x^2-41x+85\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3+x^2z-41xz^2+85z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-53568x+4618512\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{3}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(5/4, 45/8)$ | $2.9755800454594845967159915475$ | $\infty$ |
| $(5, 5)$ | $0$ | $3$ |
Integral points
\( \left(5, 5\right) \), \( \left(5, -6\right) \)
Invariants
| Conductor: | $N$ | = | \( 2365 \) | = | $5 \cdot 11 \cdot 43$ |
|
| Discriminant: | $\Delta$ | = | $286165$ | = | $5 \cdot 11^{3} \cdot 43 $ |
|
| j-invariant: | $j$ | = | \( \frac{7809531904}{286165} \) | = | $2^{18} \cdot 5^{-1} \cdot 11^{-3} \cdot 31^{3} \cdot 43^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.18349744663514182141102996487$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.18349744663514182141102996487$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8360361904679204$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.9321636377383067$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.9755800454594845967159915475$ |
|
| Real period: | $\Omega$ | ≈ | $3.0594377141705328180916308309$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 3 $ = $ 1\cdot3\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $3$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.0345339375373385616014713241 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.034533938 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 3.059438 \cdot 2.975580 \cdot 3}{3^2} \\ & \approx 3.034533938\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 216 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $11$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $43$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B.1.1 | 3.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 14190 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 43 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 11826 & 2371 \\ 2365 & 4731 \end{array}\right),\left(\begin{array}{rr} 1981 & 6 \\ 5943 & 19 \end{array}\right),\left(\begin{array}{rr} 14185 & 6 \\ 14184 & 7 \end{array}\right),\left(\begin{array}{rr} 5161 & 6 \\ 1293 & 19 \end{array}\right),\left(\begin{array}{rr} 5677 & 6 \\ 2841 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[14190])$ is a degree-$380633831424000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/14190\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $3$ | good | $2$ | \( 215 = 5 \cdot 43 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 473 = 11 \cdot 43 \) |
| $11$ | split multiplicative | $12$ | \( 215 = 5 \cdot 43 \) |
| $43$ | split multiplicative | $44$ | \( 55 = 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 2365b
consists of 2 curves linked by isogenies of
degree 3.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.3.9460.1 | \(\Z/6\Z\) | not in database |
| $6$ | 6.6.211647634000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.57692266875.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $9$ | 9.3.74507714728062226875.1 | \(\Z/9\Z\) | not in database |
| $12$ | deg 12 | \(\Z/12\Z\) | not in database |
| $18$ | 18.0.64408886361949806571047708872079675000000000000.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | ord | nonsplit | ord | split | ord | ord | ord | ord | ord | ord | ord | ss | split | ord |
| $\lambda$-invariant(s) | 2,1 | 1 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 2 | 1 |
| $\mu$-invariant(s) | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.