| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 2365.c2 |
2365b1 |
2365.c |
2365b |
$2$ |
$3$ |
\( 5 \cdot 11 \cdot 43 \) |
\( 5 \cdot 11^{3} \cdot 43 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.1 |
3B.1.1 |
$14190$ |
$16$ |
$0$ |
$2.975580045$ |
$1$ |
|
$2$ |
$216$ |
$-0.183497$ |
$7809531904/286165$ |
$0.83604$ |
$2.93216$ |
$[0, 1, 1, -41, 85]$ |
\(y^2+y=x^3+x^2-41x+85\) |
3.8.0-3.a.1.2, 4730.2.0.?, 14190.16.0.? |
$[(5/2, 45/2)]$ |
| 11825.f2 |
11825e1 |
11825.f |
11825e |
$2$ |
$3$ |
\( 5^{2} \cdot 11 \cdot 43 \) |
\( 5^{7} \cdot 11^{3} \cdot 43 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14190$ |
$16$ |
$0$ |
$0.272949167$ |
$1$ |
|
$14$ |
$5184$ |
$0.621222$ |
$7809531904/286165$ |
$0.83604$ |
$3.45866$ |
$[0, -1, 1, -1033, 12718]$ |
\(y^2+y=x^3-x^2-1033x+12718\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 2838.8.0.?, 4730.2.0.?, 14190.16.0.? |
$[(-28, 137), (22, 12)]$ |
| 21285.d2 |
21285h1 |
21285.d |
21285h |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 11 \cdot 43 \) |
\( 3^{6} \cdot 5 \cdot 11^{3} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$14190$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6480$ |
$0.365808$ |
$7809531904/286165$ |
$0.83604$ |
$2.94712$ |
$[0, 0, 1, -372, -2673]$ |
\(y^2+y=x^3-372x-2673\) |
3.8.0-3.a.1.1, 4730.2.0.?, 14190.16.0.? |
$[ ]$ |
| 26015.g2 |
26015a1 |
26015.g |
26015a |
$2$ |
$3$ |
\( 5 \cdot 11^{2} \cdot 43 \) |
\( 5 \cdot 11^{9} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14190$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25920$ |
$1.015450$ |
$7809531904/286165$ |
$0.83604$ |
$3.65576$ |
$[0, 1, 1, -5001, -133424]$ |
\(y^2+y=x^3+x^2-5001x-133424\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 1290.8.0.?, 4730.2.0.?, 14190.16.0.? |
$[ ]$ |
| 37840.f2 |
37840j1 |
37840.f |
37840j |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 11 \cdot 43 \) |
\( 2^{12} \cdot 5 \cdot 11^{3} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$28380$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15552$ |
$0.509649$ |
$7809531904/286165$ |
$0.83604$ |
$2.95001$ |
$[0, -1, 0, -661, -6115]$ |
\(y^2=x^3-x^2-661x-6115\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 4730.2.0.?, 14190.8.0.?, 28380.16.0.? |
$[ ]$ |
| 101695.d2 |
101695f1 |
101695.d |
101695f |
$2$ |
$3$ |
\( 5 \cdot 11 \cdot 43^{2} \) |
\( 5 \cdot 11^{3} \cdot 43^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14190$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$399168$ |
$1.697104$ |
$7809531904/286165$ |
$0.83604$ |
$3.93295$ |
$[0, -1, 1, -76425, -7844982]$ |
\(y^2+y=x^3-x^2-76425x-7844982\) |
3.4.0.a.1, 129.8.0.?, 330.8.0.?, 4730.2.0.?, 14190.16.0.? |
$[ ]$ |
| 106425.p2 |
106425h1 |
106425.p |
106425h |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 43 \) |
\( 3^{6} \cdot 5^{7} \cdot 11^{3} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14190$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$155520$ |
$1.170528$ |
$7809531904/286165$ |
$0.83604$ |
$3.37160$ |
$[0, 0, 1, -9300, -334094]$ |
\(y^2+y=x^3-9300x-334094\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 2838.8.0.?, 4730.2.0.?, 14190.16.0.? |
$[ ]$ |
| 115885.g2 |
115885o1 |
115885.g |
115885o |
$2$ |
$3$ |
\( 5 \cdot 7^{2} \cdot 11 \cdot 43 \) |
\( 5 \cdot 7^{6} \cdot 11^{3} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$99330$ |
$16$ |
$0$ |
$1.229049727$ |
$1$ |
|
$4$ |
$77760$ |
$0.789457$ |
$7809531904/286165$ |
$0.83604$ |
$2.95481$ |
$[0, -1, 1, -2025, -33279]$ |
\(y^2+y=x^3-x^2-2025x-33279\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 4730.2.0.?, 14190.8.0.?, 99330.16.0.? |
$[(-23, 24)]$ |
| 130075.n2 |
130075n1 |
130075.n |
130075n |
$2$ |
$3$ |
\( 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 5^{7} \cdot 11^{9} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14190$ |
$16$ |
$0$ |
$2.261622539$ |
$1$ |
|
$2$ |
$622080$ |
$1.820169$ |
$7809531904/286165$ |
$0.83604$ |
$3.97615$ |
$[0, -1, 1, -125033, -16427907]$ |
\(y^2+y=x^3-x^2-125033x-16427907\) |
3.4.0.a.1, 165.8.0.?, 258.8.0.?, 4730.2.0.?, 14190.16.0.? |
$[(587, 10587)]$ |
| 151360.be2 |
151360by1 |
151360.be |
151360by |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 11 \cdot 43 \) |
\( 2^{6} \cdot 5 \cdot 11^{3} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$56760$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$31104$ |
$0.163076$ |
$7809531904/286165$ |
$0.83604$ |
$2.25845$ |
$[0, -1, 0, -165, 847]$ |
\(y^2=x^3-x^2-165x+847\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 4730.2.0.?, 14190.8.0.?, 56760.16.0.? |
$[ ]$ |
| 151360.cg2 |
151360y1 |
151360.cg |
151360y |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 11 \cdot 43 \) |
\( 2^{6} \cdot 5 \cdot 11^{3} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$56760$ |
$16$ |
$0$ |
$1.944914775$ |
$1$ |
|
$2$ |
$31104$ |
$0.163076$ |
$7809531904/286165$ |
$0.83604$ |
$2.25845$ |
$[0, 1, 0, -165, -847]$ |
\(y^2=x^3+x^2-165x-847\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 4730.2.0.?, 14190.8.0.?, 56760.16.0.? |
$[(-8, 5)]$ |
| 189200.ca2 |
189200bk1 |
189200.ca |
189200bk |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 11 \cdot 43 \) |
\( 2^{12} \cdot 5^{7} \cdot 11^{3} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$28380$ |
$16$ |
$0$ |
$5.760314917$ |
$1$ |
|
$0$ |
$373248$ |
$1.314369$ |
$7809531904/286165$ |
$0.83604$ |
$3.35400$ |
$[0, 1, 0, -16533, -797437]$ |
\(y^2=x^3+x^2-16533x-797437\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 4730.2.0.?, 5676.8.0.?, 14190.8.0.?, $\ldots$ |
$[(2077/2, 91525/2)]$ |
| 234135.u2 |
234135u1 |
234135.u |
234135u |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 43 \) |
\( 3^{6} \cdot 5 \cdot 11^{9} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14190$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$777600$ |
$1.564756$ |
$7809531904/286165$ |
$0.83604$ |
$3.53922$ |
$[0, 0, 1, -45012, 3557430]$ |
\(y^2+y=x^3-45012x+3557430\) |
3.4.0.a.1, 33.8.0-3.a.1.1, 1290.8.0.?, 4730.2.0.?, 14190.16.0.? |
$[ ]$ |
| 340560.cj2 |
340560cj1 |
340560.cj |
340560cj |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 43 \) |
\( 2^{12} \cdot 3^{6} \cdot 5 \cdot 11^{3} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$28380$ |
$16$ |
$0$ |
$3.245675520$ |
$1$ |
|
$2$ |
$466560$ |
$1.058956$ |
$7809531904/286165$ |
$0.83604$ |
$2.95863$ |
$[0, 0, 0, -5952, 171056]$ |
\(y^2=x^3-5952x+171056\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 4730.2.0.?, 14190.8.0.?, 28380.16.0.? |
$[(-79, 385)]$ |
| 399685.g2 |
399685g1 |
399685.g |
399685g |
$2$ |
$3$ |
\( 5 \cdot 11 \cdot 13^{2} \cdot 43 \) |
\( 5 \cdot 11^{3} \cdot 13^{6} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$184470$ |
$16$ |
$0$ |
$9.880692146$ |
$1$ |
|
$0$ |
$505440$ |
$1.098978$ |
$7809531904/286165$ |
$0.83604$ |
$2.95914$ |
$[0, 1, 1, -6985, 215154]$ |
\(y^2+y=x^3+x^2-6985x+215154\) |
3.4.0.a.1, 39.8.0-3.a.1.1, 4730.2.0.?, 14190.8.0.?, 184470.16.0.? |
$[(7813/18, 1441259/18)]$ |
| 416240.k2 |
416240k1 |
416240.k |
416240k |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 11^{2} \cdot 43 \) |
\( 2^{12} \cdot 5 \cdot 11^{9} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$28380$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1866240$ |
$1.708597$ |
$7809531904/286165$ |
$0.83604$ |
$3.51524$ |
$[0, -1, 0, -80021, 8459101]$ |
\(y^2=x^3-x^2-80021x+8459101\) |
3.4.0.a.1, 132.8.0.?, 2580.8.0.?, 4730.2.0.?, 14190.8.0.?, $\ldots$ |
$[ ]$ |