Properties

Label 23616.g
Number of curves $4$
Conductor $23616$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 23616.g have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(41\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 23616.g do not have complex multiplication.

Modular form 23616.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - 4 q^{7} + 4 q^{11} - 2 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 23616.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23616.g1 23616bu4 \([0, 0, 0, -252876, -48942704]\) \(9357915116017/538002\) \(102813783293952\) \([2]\) \(147456\) \(1.7522\)  
23616.g2 23616bu2 \([0, 0, 0, -16716, -671600]\) \(2703045457/544644\) \(104083089260544\) \([2, 2]\) \(73728\) \(1.4056\)  
23616.g3 23616bu1 \([0, 0, 0, -5196, 134800]\) \(81182737/5904\) \(1128271970304\) \([2]\) \(36864\) \(1.0590\) \(\Gamma_0(N)\)-optimal
23616.g4 23616bu3 \([0, 0, 0, 35124, -4010096]\) \(25076571983/50863698\) \(-9720204058165248\) \([2]\) \(147456\) \(1.7522\)