Properties

Label 235950.h
Number of curves $4$
Conductor $235950$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 235950.h have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 235950.h do not have complex multiplication.

Modular form 235950.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - 4 q^{7} - q^{8} + q^{9} - q^{12} + q^{13} + 4 q^{14} + q^{16} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 235950.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
235950.h1 235950h4 \([1, 1, 0, -197155950, 1065330520500]\) \(30618029936661765625/3678951124992\) \(101835723967843008000000\) \([2]\) \(59719680\) \(3.4395\)  
235950.h2 235950h3 \([1, 1, 0, -11299950, 19518808500]\) \(-5764706497797625/2612665516032\) \(-72320255222611968000000\) \([2]\) \(29859840\) \(3.0929\)  
235950.h3 235950h2 \([1, 1, 0, -5446575, -2789764875]\) \(645532578015625/252306960048\) \(6984018288274920750000\) \([2]\) \(19906560\) \(2.8902\)  
235950.h4 235950h1 \([1, 1, 0, 1087425, -313378875]\) \(5137417856375/4510142208\) \(-124843625627292000000\) \([2]\) \(9953280\) \(2.5436\) \(\Gamma_0(N)\)-optimal