Properties

Label 235200ol
Number of curves $1$
Conductor $235200$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ol1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 235200ol1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 - 7 T + 13 T^{2}\) 1.13.ah
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 235200ol do not have complex multiplication.

Modular form 235200.2.a.ol

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} + 6 q^{11} + 7 q^{13} - 4 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 235200ol

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
235200.ol1 235200ol1 \([0, -1, 0, -26010833, -53244620463]\) \(-43061200/2187\) \(-98843739130080000000000\) \([]\) \(36126720\) \(3.1728\) \(\Gamma_0(N)\)-optimal