Properties

Label 235200.xe
Number of curves $4$
Conductor $235200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("xe1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 235200.xe have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 235200.xe do not have complex multiplication.

Modular form 235200.2.a.xe

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} + 6 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 235200.xe

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
235200.xe1 235200xe4 \([0, 1, 0, -1060033, -420159937]\) \(546718898/405\) \(97582786560000000\) \([2]\) \(3538944\) \(2.1936\)  
235200.xe2 235200xe3 \([0, 1, 0, -668033, 207432063]\) \(136835858/1875\) \(451772160000000000\) \([2]\) \(3538944\) \(2.1936\)  
235200.xe3 235200xe2 \([0, 1, 0, -80033, -3659937]\) \(470596/225\) \(27106329600000000\) \([2, 2]\) \(1769472\) \(1.8471\)  
235200.xe4 235200xe1 \([0, 1, 0, 17967, -425937]\) \(21296/15\) \(-451772160000000\) \([2]\) \(884736\) \(1.5005\) \(\Gamma_0(N)\)-optimal