Properties

Label 235200.hs
Number of curves $4$
Conductor $235200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hs1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 235200.hs have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 235200.hs do not have complex multiplication.

Modular form 235200.2.a.hs

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} + 2 q^{13} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 235200.hs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
235200.hs1 235200hs3 \([0, -1, 0, -2353633, 1390595137]\) \(23937672968/45\) \(2710632960000000\) \([2]\) \(3538944\) \(2.2166\)  
235200.hs2 235200hs4 \([0, -1, 0, -393633, -66664863]\) \(111980168/32805\) \(1976051427840000000\) \([2]\) \(3538944\) \(2.2166\)  
235200.hs3 235200hs2 \([0, -1, 0, -148633, 21290137]\) \(48228544/2025\) \(15247310400000000\) \([2, 2]\) \(1769472\) \(1.8700\)  
235200.hs4 235200hs1 \([0, -1, 0, 4492, 1230762]\) \(85184/5625\) \(-661775625000000\) \([2]\) \(884736\) \(1.5234\) \(\Gamma_0(N)\)-optimal