Properties

Label 235200.bal
Number of curves $4$
Conductor $235200$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bal1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 235200.bal have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 235200.bal do not have complex multiplication.

Modular form 235200.2.a.bal

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} + 4 q^{11} - 6 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 235200.bal

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
235200.bal1 235200bal3 \([0, 1, 0, -5489633, 4948828863]\) \(303735479048/105\) \(6324810240000000\) \([2]\) \(7077888\) \(2.3878\)  
235200.bal2 235200bal2 \([0, 1, 0, -344633, 76513863]\) \(601211584/11025\) \(83013134400000000\) \([2, 2]\) \(3538944\) \(2.0413\)  
235200.bal3 235200bal1 \([0, 1, 0, -44508, -1818762]\) \(82881856/36015\) \(4237128735000000\) \([2]\) \(1769472\) \(1.6947\) \(\Gamma_0(N)\)-optimal
235200.bal4 235200bal4 \([0, 1, 0, -1633, 222288863]\) \(-8/354375\) \(-21346234560000000000\) \([2]\) \(7077888\) \(2.3878\)