Properties

Label 23120.i
Number of curves $4$
Conductor $23120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 23120.i have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 23120.i do not have complex multiplication.

Modular form 23120.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} + q^{5} + 2 q^{7} + q^{9} + 2 q^{13} - 2 q^{15} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 23120.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23120.i1 23120bj3 \([0, 1, 0, -11945, 498418]\) \(488095744/125\) \(48275138000\) \([2]\) \(27648\) \(1.0360\)  
23120.i2 23120bj4 \([0, 1, 0, -10500, 625000]\) \(-20720464/15625\) \(-96550276000000\) \([2]\) \(55296\) \(1.3825\)  
23120.i3 23120bj1 \([0, 1, 0, -385, -2130]\) \(16384/5\) \(1931005520\) \([2]\) \(9216\) \(0.48666\) \(\Gamma_0(N)\)-optimal
23120.i4 23120bj2 \([0, 1, 0, 1060, -13112]\) \(21296/25\) \(-154480441600\) \([2]\) \(18432\) \(0.83323\)