Properties

Label 23120.bm
Number of curves $2$
Conductor $23120$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bm1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 23120.bm have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 3 T + 3 T^{2}\) 1.3.ad
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 23120.bm do not have complex multiplication.

Modular form 23120.2.a.bm

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{3} - q^{5} + 4 q^{7} + 6 q^{9} - 2 q^{11} + q^{13} - 3 q^{15} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 13 \\ 13 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 23120.bm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23120.bm1 23120u2 \([0, 0, 0, -583128883, 5420199028082]\) \(-45145776875761017/2441406250\) \(-1185878764970000000000000\) \([]\) \(13238784\) \(3.6862\)  
23120.bm2 23120u1 \([0, 0, 0, -643603, -292490542]\) \(-60698457/40960\) \(-19895744189714923520\) \([]\) \(1018368\) \(2.4037\) \(\Gamma_0(N)\)-optimal