Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2-5826610x+4584017087\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z-5826610xz^2+4584017087z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-7551286587x+213985170518166\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(921, -461)$ | $0$ | $2$ |
| $(1817, -909)$ | $0$ | $2$ |
Integral points
\( \left(921, -461\right) \), \( \left(1817, -909\right) \)
Invariants
| Conductor: | $N$ | = | \( 2310 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $3572502915711058560000$ | = | $2^{10} \cdot 3^{12} \cdot 5^{4} \cdot 7^{2} \cdot 11^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{21876183941534093095979041}{3572502915711058560000} \) | = | $2^{-10} \cdot 3^{-12} \cdot 5^{-4} \cdot 7^{-2} \cdot 11^{-8} \cdot 13^{3} \cdot 21513637^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8574319917522168096962478935$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.8574319917522168096962478935$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0381720169836188$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.533559672720964$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.13421500281969489431990683528$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 320 $ = $ ( 2 \cdot 5 )\cdot2\cdot2^{2}\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L(E,1)$ | ≈ | $2.6843000563938978863981367056 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.684300056 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.134215 \cdot 1.000000 \cdot 320}{4^2} \\ & \approx 2.684300056\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 184320 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $10$ | $I_{10}$ | split multiplicative | -1 | 1 | 10 | 10 |
| $3$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
| $5$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $11$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 8.48.0.32 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 833 & 8 \\ 832 & 9 \end{array}\right),\left(\begin{array}{rr} 281 & 8 \\ 284 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 634 \\ 626 & 835 \end{array}\right),\left(\begin{array}{rr} 7 & 216 \\ 22 & 649 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 234 & 835 \end{array}\right),\left(\begin{array}{rr} 337 & 8 \\ 508 & 33 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 836 & 837 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$371589120$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 1 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \) |
| $5$ | split multiplicative | $6$ | \( 231 = 3 \cdot 7 \cdot 11 \) |
| $7$ | split multiplicative | $8$ | \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 2310o
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-14}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{14})\) | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{15})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.493455671296.15 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.7965941760000.41 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.2.768797006670000.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 |
|---|---|---|---|---|---|
| Reduction type | split | nonsplit | split | split | nonsplit |
| $\lambda$-invariant(s) | 3 | 0 | 3 | 1 | 0 |
| $\mu$-invariant(s) | 1 | 0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.