Properties

Label 2310.2.a.o
Level $2310$
Weight $2$
Character orbit 2310.a
Self dual yes
Analytic conductor $18.445$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2310.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(18.4454428669\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{7} + q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{7} + q^{8} + q^{9} + q^{10} - q^{11} - q^{12} - 2 q^{13} + q^{14} - q^{15} + q^{16} + 2 q^{17} + q^{18} - 4 q^{19} + q^{20} - q^{21} - q^{22} + 8 q^{23} - q^{24} + q^{25} - 2 q^{26} - q^{27} + q^{28} + 6 q^{29} - q^{30} + 8 q^{31} + q^{32} + q^{33} + 2 q^{34} + q^{35} + q^{36} - 2 q^{37} - 4 q^{38} + 2 q^{39} + q^{40} + 2 q^{41} - q^{42} + 4 q^{43} - q^{44} + q^{45} + 8 q^{46} + 8 q^{47} - q^{48} + q^{49} + q^{50} - 2 q^{51} - 2 q^{52} - 10 q^{53} - q^{54} - q^{55} + q^{56} + 4 q^{57} + 6 q^{58} - 12 q^{59} - q^{60} - 2 q^{61} + 8 q^{62} + q^{63} + q^{64} - 2 q^{65} + q^{66} - 4 q^{67} + 2 q^{68} - 8 q^{69} + q^{70} + 8 q^{71} + q^{72} + 2 q^{73} - 2 q^{74} - q^{75} - 4 q^{76} - q^{77} + 2 q^{78} + 16 q^{79} + q^{80} + q^{81} + 2 q^{82} - 4 q^{83} - q^{84} + 2 q^{85} + 4 q^{86} - 6 q^{87} - q^{88} - 14 q^{89} + q^{90} - 2 q^{91} + 8 q^{92} - 8 q^{93} + 8 q^{94} - 4 q^{95} - q^{96} + 10 q^{97} + q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 1.00000 1.00000 −1.00000 1.00000 1.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(-1\)
\(7\) \(-1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2310.2.a.o 1
3.b odd 2 1 6930.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2310.2.a.o 1 1.a even 1 1 trivial
6930.2.a.d 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2310))\):

\( T_{13} + 2 \) Copy content Toggle raw display
\( T_{17} - 2 \) Copy content Toggle raw display
\( T_{19} + 4 \) Copy content Toggle raw display
\( T_{23} - 8 \) Copy content Toggle raw display
\( T_{29} - 6 \) Copy content Toggle raw display
\( T_{31} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T + 2 \) Copy content Toggle raw display
$17$ \( T - 2 \) Copy content Toggle raw display
$19$ \( T + 4 \) Copy content Toggle raw display
$23$ \( T - 8 \) Copy content Toggle raw display
$29$ \( T - 6 \) Copy content Toggle raw display
$31$ \( T - 8 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T - 2 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T - 8 \) Copy content Toggle raw display
$53$ \( T + 10 \) Copy content Toggle raw display
$59$ \( T + 12 \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T - 8 \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T - 16 \) Copy content Toggle raw display
$83$ \( T + 4 \) Copy content Toggle raw display
$89$ \( T + 14 \) Copy content Toggle raw display
$97$ \( T - 10 \) Copy content Toggle raw display
show more
show less